$ShiftwiseConv:$ Small Convolutional Kernel with Large Kernel Effect Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2401.12736
Large kernels make standard convolutional neural networks (CNNs) great again over transformer architectures in various vision tasks. Nonetheless, recent studies meticulously designed around increasing kernel size have shown diminishing returns or stagnation in performance. Thus, the hidden factors of large kernel convolution that affect model performance remain unexplored. In this paper, we reveal that the key hidden factors of large kernels can be summarized as two separate components: extracting features at a certain granularity and fusing features by multiple pathways. To this end, we leverage the multi-path long-distance sparse dependency relationship to enhance feature utilization via the proposed Shiftwise (SW) convolution operator with a pure CNN architecture. In a wide range of vision tasks such as classification, segmentation, and detection, SW surpasses state-of-the-art transformers and CNN architectures, including SLaK and UniRepLKNet. More importantly, our experiments demonstrate that $3 \times 3$ convolutions can replace large convolutions in existing large kernel CNNs to achieve comparable effects, which may inspire follow-up works. Code and all the models at https://github.com/lidc54/shift-wiseConv.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2401.12736
- https://arxiv.org/pdf/2401.12736
- OA Status
- green
- Cited By
- 8
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4391212690
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4391212690Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2401.12736Digital Object Identifier
- Title
-
$ShiftwiseConv:$ Small Convolutional Kernel with Large Kernel EffectWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-23Full publication date if available
- Authors
-
Dachong Li, Li Li, Zhuangzhuang Chen, Jianqiang LiList of authors in order
- Landing page
-
https://arxiv.org/abs/2401.12736Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2401.12736Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2401.12736Direct OA link when available
- Concepts
-
Convolutional neural network, Computer science, Kernel (algebra), Convolutional code, Convolution (computer science), Operator (biology), Artificial intelligence, Pattern recognition (psychology), Algorithm, Artificial neural network, Mathematics, Repressor, Transcription factor, Chemistry, Combinatorics, Gene, Decoding methods, BiochemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 5Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4391212690 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2401.12736 |
| ids.doi | https://doi.org/10.48550/arxiv.2401.12736 |
| ids.openalex | https://openalex.org/W4391212690 |
| fwci | |
| type | preprint |
| title | $ShiftwiseConv:$ Small Convolutional Kernel with Large Kernel Effect |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11992 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9980999827384949 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | CCD and CMOS Imaging Sensors |
| topics[1].id | https://openalex.org/T10502 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.996399998664856 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Advanced Memory and Neural Computing |
| topics[2].id | https://openalex.org/T10036 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9950000047683716 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Neural Network Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C81363708 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8422593474388123 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[0].display_name | Convolutional neural network |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7712953686714172 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C74193536 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7348190546035767 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q574844 |
| concepts[2].display_name | Kernel (algebra) |
| concepts[3].id | https://openalex.org/C157899210 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6599551439285278 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1395022 |
| concepts[3].display_name | Convolutional code |
| concepts[4].id | https://openalex.org/C45347329 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5245171785354614 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5166604 |
| concepts[4].display_name | Convolution (computer science) |
| concepts[5].id | https://openalex.org/C17020691 |
| concepts[5].level | 5 |
| concepts[5].score | 0.4903114140033722 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q139677 |
| concepts[5].display_name | Operator (biology) |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4708877205848694 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.40040677785873413 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C11413529 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3728184700012207 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[8].display_name | Algorithm |
| concepts[9].id | https://openalex.org/C50644808 |
| concepts[9].level | 2 |
| concepts[9].score | 0.1480477750301361 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[9].display_name | Artificial neural network |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.11249414086341858 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C158448853 |
| concepts[11].level | 4 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q425218 |
| concepts[11].display_name | Repressor |
| concepts[12].id | https://openalex.org/C86339819 |
| concepts[12].level | 3 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q407384 |
| concepts[12].display_name | Transcription factor |
| concepts[13].id | https://openalex.org/C185592680 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[13].display_name | Chemistry |
| concepts[14].id | https://openalex.org/C114614502 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[14].display_name | Combinatorics |
| concepts[15].id | https://openalex.org/C104317684 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[15].display_name | Gene |
| concepts[16].id | https://openalex.org/C57273362 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q576722 |
| concepts[16].display_name | Decoding methods |
| concepts[17].id | https://openalex.org/C55493867 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[17].display_name | Biochemistry |
| keywords[0].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[0].score | 0.8422593474388123 |
| keywords[0].display_name | Convolutional neural network |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7712953686714172 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/kernel |
| keywords[2].score | 0.7348190546035767 |
| keywords[2].display_name | Kernel (algebra) |
| keywords[3].id | https://openalex.org/keywords/convolutional-code |
| keywords[3].score | 0.6599551439285278 |
| keywords[3].display_name | Convolutional code |
| keywords[4].id | https://openalex.org/keywords/convolution |
| keywords[4].score | 0.5245171785354614 |
| keywords[4].display_name | Convolution (computer science) |
| keywords[5].id | https://openalex.org/keywords/operator |
| keywords[5].score | 0.4903114140033722 |
| keywords[5].display_name | Operator (biology) |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.4708877205848694 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.40040677785873413 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/algorithm |
| keywords[8].score | 0.3728184700012207 |
| keywords[8].display_name | Algorithm |
| keywords[9].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[9].score | 0.1480477750301361 |
| keywords[9].display_name | Artificial neural network |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.11249414086341858 |
| keywords[10].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2401.12736 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2401.12736 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2401.12736 |
| locations[1].id | doi:10.48550/arxiv.2401.12736 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2401.12736 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5114121429 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Dachong Li |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Li, Dachong |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5107114898 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9392-7862 |
| authorships[1].author.display_name | Li Li |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Li, Li |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5008344915 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0336-1181 |
| authorships[2].author.display_name | Zhuangzhuang Chen |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chen, Zhuangzhuang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100393871 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2208-962X |
| authorships[3].author.display_name | Jianqiang Li |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Li, Jianqiang |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2401.12736 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-01-25T00:00:00 |
| display_name | $ShiftwiseConv:$ Small Convolutional Kernel with Large Kernel Effect |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11992 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9980999827384949 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | CCD and CMOS Imaging Sensors |
| related_works | https://openalex.org/W2610189143, https://openalex.org/W2964954556, https://openalex.org/W3034421924, https://openalex.org/W2982536526, https://openalex.org/W4386858688, https://openalex.org/W4380302312, https://openalex.org/W3008689640, https://openalex.org/W4390971171, https://openalex.org/W4385338604, https://openalex.org/W3081626085 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2401.12736 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2401.12736 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2401.12736 |
| primary_location.id | pmh:oai:arXiv.org:2401.12736 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2401.12736 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2401.12736 |
| publication_date | 2024-01-23 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 71, 103, 108 |
| abstract_inverted_index.$3 | 137 |
| abstract_inverted_index.3$ | 139 |
| abstract_inverted_index.In | 48, 107 |
| abstract_inverted_index.SW | 120 |
| abstract_inverted_index.To | 80 |
| abstract_inverted_index.as | 64, 115 |
| abstract_inverted_index.at | 70, 164 |
| abstract_inverted_index.be | 62 |
| abstract_inverted_index.by | 77 |
| abstract_inverted_index.in | 13, 32, 145 |
| abstract_inverted_index.of | 38, 58, 111 |
| abstract_inverted_index.or | 30 |
| abstract_inverted_index.to | 91, 150 |
| abstract_inverted_index.we | 51, 83 |
| abstract_inverted_index.CNN | 105, 125 |
| abstract_inverted_index.all | 161 |
| abstract_inverted_index.and | 74, 118, 124, 129, 160 |
| abstract_inverted_index.can | 61, 141 |
| abstract_inverted_index.key | 55 |
| abstract_inverted_index.may | 155 |
| abstract_inverted_index.our | 133 |
| abstract_inverted_index.the | 35, 54, 85, 96, 162 |
| abstract_inverted_index.two | 65 |
| abstract_inverted_index.via | 95 |
| abstract_inverted_index.(SW) | 99 |
| abstract_inverted_index.CNNs | 149 |
| abstract_inverted_index.Code | 159 |
| abstract_inverted_index.More | 131 |
| abstract_inverted_index.SLaK | 128 |
| abstract_inverted_index.end, | 82 |
| abstract_inverted_index.have | 26 |
| abstract_inverted_index.make | 2 |
| abstract_inverted_index.over | 10 |
| abstract_inverted_index.pure | 104 |
| abstract_inverted_index.size | 25 |
| abstract_inverted_index.such | 114 |
| abstract_inverted_index.that | 42, 53, 136 |
| abstract_inverted_index.this | 49, 81 |
| abstract_inverted_index.wide | 109 |
| abstract_inverted_index.with | 102 |
| abstract_inverted_index.Large | 0 |
| abstract_inverted_index.Thus, | 34 |
| abstract_inverted_index.again | 9 |
| abstract_inverted_index.great | 8 |
| abstract_inverted_index.large | 39, 59, 143, 147 |
| abstract_inverted_index.model | 44 |
| abstract_inverted_index.range | 110 |
| abstract_inverted_index.shown | 27 |
| abstract_inverted_index.tasks | 113 |
| abstract_inverted_index.which | 154 |
| abstract_inverted_index.(CNNs) | 7 |
| abstract_inverted_index.\times | 138 |
| abstract_inverted_index.affect | 43 |
| abstract_inverted_index.around | 22 |
| abstract_inverted_index.fusing | 75 |
| abstract_inverted_index.hidden | 36, 56 |
| abstract_inverted_index.kernel | 24, 40, 148 |
| abstract_inverted_index.models | 163 |
| abstract_inverted_index.neural | 5 |
| abstract_inverted_index.paper, | 50 |
| abstract_inverted_index.recent | 18 |
| abstract_inverted_index.remain | 46 |
| abstract_inverted_index.reveal | 52 |
| abstract_inverted_index.sparse | 88 |
| abstract_inverted_index.tasks. | 16 |
| abstract_inverted_index.vision | 15, 112 |
| abstract_inverted_index.works. | 158 |
| abstract_inverted_index.achieve | 151 |
| abstract_inverted_index.certain | 72 |
| abstract_inverted_index.enhance | 92 |
| abstract_inverted_index.factors | 37, 57 |
| abstract_inverted_index.feature | 93 |
| abstract_inverted_index.inspire | 156 |
| abstract_inverted_index.kernels | 1, 60 |
| abstract_inverted_index.replace | 142 |
| abstract_inverted_index.returns | 29 |
| abstract_inverted_index.studies | 19 |
| abstract_inverted_index.various | 14 |
| abstract_inverted_index.designed | 21 |
| abstract_inverted_index.effects, | 153 |
| abstract_inverted_index.existing | 146 |
| abstract_inverted_index.features | 69, 76 |
| abstract_inverted_index.leverage | 84 |
| abstract_inverted_index.multiple | 78 |
| abstract_inverted_index.networks | 6 |
| abstract_inverted_index.operator | 101 |
| abstract_inverted_index.proposed | 97 |
| abstract_inverted_index.separate | 66 |
| abstract_inverted_index.standard | 3 |
| abstract_inverted_index.Shiftwise | 98 |
| abstract_inverted_index.follow-up | 157 |
| abstract_inverted_index.including | 127 |
| abstract_inverted_index.pathways. | 79 |
| abstract_inverted_index.surpasses | 121 |
| abstract_inverted_index.comparable | 152 |
| abstract_inverted_index.dependency | 89 |
| abstract_inverted_index.detection, | 119 |
| abstract_inverted_index.extracting | 68 |
| abstract_inverted_index.increasing | 23 |
| abstract_inverted_index.multi-path | 86 |
| abstract_inverted_index.stagnation | 31 |
| abstract_inverted_index.summarized | 63 |
| abstract_inverted_index.components: | 67 |
| abstract_inverted_index.convolution | 41, 100 |
| abstract_inverted_index.demonstrate | 135 |
| abstract_inverted_index.diminishing | 28 |
| abstract_inverted_index.experiments | 134 |
| abstract_inverted_index.granularity | 73 |
| abstract_inverted_index.performance | 45 |
| abstract_inverted_index.transformer | 11 |
| abstract_inverted_index.unexplored. | 47 |
| abstract_inverted_index.utilization | 94 |
| abstract_inverted_index.Nonetheless, | 17 |
| abstract_inverted_index.UniRepLKNet. | 130 |
| abstract_inverted_index.convolutions | 140, 144 |
| abstract_inverted_index.importantly, | 132 |
| abstract_inverted_index.meticulously | 20 |
| abstract_inverted_index.performance. | 33 |
| abstract_inverted_index.relationship | 90 |
| abstract_inverted_index.transformers | 123 |
| abstract_inverted_index.architecture. | 106 |
| abstract_inverted_index.architectures | 12 |
| abstract_inverted_index.convolutional | 4 |
| abstract_inverted_index.long-distance | 87 |
| abstract_inverted_index.segmentation, | 117 |
| abstract_inverted_index.architectures, | 126 |
| abstract_inverted_index.classification, | 116 |
| abstract_inverted_index.state-of-the-art | 122 |
| abstract_inverted_index.https://github.com/lidc54/shift-wiseConv. | 165 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.4000000059604645 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile |