Short-Range Order Based Ultra Fast Large-Scale Modeling of High-Entropy Alloys Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2411.18906
High-Entropy Alloys (HEAs) exhibit complex atomic interactions, with short-range order (SRO) playing a critical role in determining their properties. Traditional methods, such as Monte Carlo generator of Special Quasirandom Structures within the Alloy Theoretic Automated Toolkit (ATAT-mcsqs), Super-cell Random Approximates (SCRAPs), and hybrid Monte Carlo-Molecular Dynamics (MC-MD) are often hindered by limited system sizes and high computational costs. In response, we introduce PyHEA, a Python-based toolkit with a high-performance C++ core that leverages global and local search algorithms, incremental SRO computations, and GPU acceleration for unprecedented efficiency. When constructing random HEAs, PyHEA achieves speedups exceeding 133,000x and 13,900x over ATAT-mcsqs and SCRAPs, respectively, while maintaining high accuracy. PyHEA also offers a flexible workflow that allows users to incorporate target SRO values from external simulations (e.g., LAMMPS or density functional theory (DFT)), thereby enabling more realistic and customizable HEA models. As a proof of concept, PyHEA successfully replicated literature results for a 256,000-atom Fe-Cr-Co system within minutes-an order-of-magnitude improvement over hybrid MC-MD approaches. This dramatic acceleration opens new possibilities for bridging theoretical insights and practical applications, paving the way for the efficient design of next-generation HEAs.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2411.18906
- https://arxiv.org/pdf/2411.18906
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405029784
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405029784Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2411.18906Digital Object Identifier
- Title
-
Short-Range Order Based Ultra Fast Large-Scale Modeling of High-Entropy AlloysWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-28Full publication date if available
- Authors
-
Changning Niu, Lifeng LiuList of authors in order
- Landing page
-
https://arxiv.org/abs/2411.18906Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2411.18906Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2411.18906Direct OA link when available
- Concepts
-
High entropy alloys, Short range order, Statistical physics, Scale (ratio), Materials science, Range (aeronautics), Physics, Metallurgy, Condensed matter physics, Alloy, Composite material, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405029784 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2411.18906 |
| ids.doi | https://doi.org/10.48550/arxiv.2411.18906 |
| ids.openalex | https://openalex.org/W4405029784 |
| fwci | |
| type | preprint |
| title | Short-Range Order Based Ultra Fast Large-Scale Modeling of High-Entropy Alloys |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11143 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9962000250816345 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2210 |
| topics[0].subfield.display_name | Mechanical Engineering |
| topics[0].display_name | High Entropy Alloys Studies |
| topics[1].id | https://openalex.org/T10626 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.989799976348877 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2202 |
| topics[1].subfield.display_name | Aerospace Engineering |
| topics[1].display_name | High-Temperature Coating Behaviors |
| topics[2].id | https://openalex.org/T10840 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9797999858856201 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2210 |
| topics[2].subfield.display_name | Mechanical Engineering |
| topics[2].display_name | High Temperature Alloys and Creep |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2780299837 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6009620428085327 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q18405127 |
| concepts[0].display_name | High entropy alloys |
| concepts[1].id | https://openalex.org/C2778931360 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5386784672737122 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q30590153 |
| concepts[1].display_name | Short range order |
| concepts[2].id | https://openalex.org/C121864883 |
| concepts[2].level | 1 |
| concepts[2].score | 0.4929354190826416 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q677916 |
| concepts[2].display_name | Statistical physics |
| concepts[3].id | https://openalex.org/C2778755073 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4774903953075409 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[3].display_name | Scale (ratio) |
| concepts[4].id | https://openalex.org/C192562407 |
| concepts[4].level | 0 |
| concepts[4].score | 0.43432679772377014 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[4].display_name | Materials science |
| concepts[5].id | https://openalex.org/C204323151 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4297044277191162 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q905424 |
| concepts[5].display_name | Range (aeronautics) |
| concepts[6].id | https://openalex.org/C121332964 |
| concepts[6].level | 0 |
| concepts[6].score | 0.17209872603416443 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[6].display_name | Physics |
| concepts[7].id | https://openalex.org/C191897082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.16302728652954102 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11467 |
| concepts[7].display_name | Metallurgy |
| concepts[8].id | https://openalex.org/C26873012 |
| concepts[8].level | 1 |
| concepts[8].score | 0.15253934264183044 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q214781 |
| concepts[8].display_name | Condensed matter physics |
| concepts[9].id | https://openalex.org/C2780026712 |
| concepts[9].level | 2 |
| concepts[9].score | 0.1484251618385315 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q37756 |
| concepts[9].display_name | Alloy |
| concepts[10].id | https://openalex.org/C159985019 |
| concepts[10].level | 1 |
| concepts[10].score | 0.06898826360702515 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[10].display_name | Composite material |
| concepts[11].id | https://openalex.org/C62520636 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[11].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/high-entropy-alloys |
| keywords[0].score | 0.6009620428085327 |
| keywords[0].display_name | High entropy alloys |
| keywords[1].id | https://openalex.org/keywords/short-range-order |
| keywords[1].score | 0.5386784672737122 |
| keywords[1].display_name | Short range order |
| keywords[2].id | https://openalex.org/keywords/statistical-physics |
| keywords[2].score | 0.4929354190826416 |
| keywords[2].display_name | Statistical physics |
| keywords[3].id | https://openalex.org/keywords/scale |
| keywords[3].score | 0.4774903953075409 |
| keywords[3].display_name | Scale (ratio) |
| keywords[4].id | https://openalex.org/keywords/materials-science |
| keywords[4].score | 0.43432679772377014 |
| keywords[4].display_name | Materials science |
| keywords[5].id | https://openalex.org/keywords/range |
| keywords[5].score | 0.4297044277191162 |
| keywords[5].display_name | Range (aeronautics) |
| keywords[6].id | https://openalex.org/keywords/physics |
| keywords[6].score | 0.17209872603416443 |
| keywords[6].display_name | Physics |
| keywords[7].id | https://openalex.org/keywords/metallurgy |
| keywords[7].score | 0.16302728652954102 |
| keywords[7].display_name | Metallurgy |
| keywords[8].id | https://openalex.org/keywords/condensed-matter-physics |
| keywords[8].score | 0.15253934264183044 |
| keywords[8].display_name | Condensed matter physics |
| keywords[9].id | https://openalex.org/keywords/alloy |
| keywords[9].score | 0.1484251618385315 |
| keywords[9].display_name | Alloy |
| keywords[10].id | https://openalex.org/keywords/composite-material |
| keywords[10].score | 0.06898826360702515 |
| keywords[10].display_name | Composite material |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2411.18906 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2411.18906 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2411.18906 |
| locations[1].id | doi:10.48550/arxiv.2411.18906 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2411.18906 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101650911 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9864-0553 |
| authorships[0].author.display_name | Changning Niu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Niu, Caimei |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100720052 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2732-7399 |
| authorships[1].author.display_name | Lifeng Liu |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Liu, Lifeng |
| authorships[1].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2411.18906 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-12-05T00:00:00 |
| display_name | Short-Range Order Based Ultra Fast Large-Scale Modeling of High-Entropy Alloys |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11143 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9962000250816345 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2210 |
| primary_topic.subfield.display_name | Mechanical Engineering |
| primary_topic.display_name | High Entropy Alloys Studies |
| related_works | https://openalex.org/W2947767905, https://openalex.org/W2063590593, https://openalex.org/W2906880610, https://openalex.org/W2010094694, https://openalex.org/W4323357740, https://openalex.org/W4210505445, https://openalex.org/W3007409912, https://openalex.org/W2045615329, https://openalex.org/W2327464216, https://openalex.org/W2058821877 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2411.18906 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2411.18906 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2411.18906 |
| primary_location.id | pmh:oai:arXiv.org:2411.18906 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2411.18906 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2411.18906 |
| publication_date | 2024-11-28 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 12, 63, 67, 110, 140, 150 |
| abstract_inverted_index.As | 139 |
| abstract_inverted_index.In | 58 |
| abstract_inverted_index.as | 22 |
| abstract_inverted_index.by | 50 |
| abstract_inverted_index.in | 15 |
| abstract_inverted_index.of | 26, 142, 182 |
| abstract_inverted_index.or | 126 |
| abstract_inverted_index.to | 116 |
| abstract_inverted_index.we | 60 |
| abstract_inverted_index.C++ | 69 |
| abstract_inverted_index.GPU | 82 |
| abstract_inverted_index.HEA | 137 |
| abstract_inverted_index.SRO | 79, 119 |
| abstract_inverted_index.and | 41, 54, 74, 81, 96, 100, 135, 172 |
| abstract_inverted_index.are | 47 |
| abstract_inverted_index.for | 84, 149, 168, 178 |
| abstract_inverted_index.new | 166 |
| abstract_inverted_index.the | 31, 176, 179 |
| abstract_inverted_index.way | 177 |
| abstract_inverted_index.This | 162 |
| abstract_inverted_index.When | 87 |
| abstract_inverted_index.also | 108 |
| abstract_inverted_index.core | 70 |
| abstract_inverted_index.from | 121 |
| abstract_inverted_index.high | 55, 105 |
| abstract_inverted_index.more | 133 |
| abstract_inverted_index.over | 98, 158 |
| abstract_inverted_index.role | 14 |
| abstract_inverted_index.such | 21 |
| abstract_inverted_index.that | 71, 113 |
| abstract_inverted_index.with | 7, 66 |
| abstract_inverted_index.(SRO) | 10 |
| abstract_inverted_index.Alloy | 32 |
| abstract_inverted_index.Carlo | 24 |
| abstract_inverted_index.HEAs, | 90 |
| abstract_inverted_index.HEAs. | 184 |
| abstract_inverted_index.MC-MD | 160 |
| abstract_inverted_index.Monte | 23, 43 |
| abstract_inverted_index.PyHEA | 91, 107, 144 |
| abstract_inverted_index.local | 75 |
| abstract_inverted_index.often | 48 |
| abstract_inverted_index.opens | 165 |
| abstract_inverted_index.order | 9 |
| abstract_inverted_index.proof | 141 |
| abstract_inverted_index.sizes | 53 |
| abstract_inverted_index.their | 17 |
| abstract_inverted_index.users | 115 |
| abstract_inverted_index.while | 103 |
| abstract_inverted_index.(HEAs) | 2 |
| abstract_inverted_index.(e.g., | 124 |
| abstract_inverted_index.Alloys | 1 |
| abstract_inverted_index.LAMMPS | 125 |
| abstract_inverted_index.PyHEA, | 62 |
| abstract_inverted_index.Random | 38 |
| abstract_inverted_index.allows | 114 |
| abstract_inverted_index.atomic | 5 |
| abstract_inverted_index.costs. | 57 |
| abstract_inverted_index.design | 181 |
| abstract_inverted_index.global | 73 |
| abstract_inverted_index.hybrid | 42, 159 |
| abstract_inverted_index.offers | 109 |
| abstract_inverted_index.paving | 175 |
| abstract_inverted_index.random | 89 |
| abstract_inverted_index.search | 76 |
| abstract_inverted_index.system | 52, 153 |
| abstract_inverted_index.target | 118 |
| abstract_inverted_index.theory | 129 |
| abstract_inverted_index.values | 120 |
| abstract_inverted_index.within | 30, 154 |
| abstract_inverted_index.(DFT)), | 130 |
| abstract_inverted_index.(MC-MD) | 46 |
| abstract_inverted_index.13,900x | 97 |
| abstract_inverted_index.SCRAPs, | 101 |
| abstract_inverted_index.Special | 27 |
| abstract_inverted_index.Toolkit | 35 |
| abstract_inverted_index.complex | 4 |
| abstract_inverted_index.density | 127 |
| abstract_inverted_index.exhibit | 3 |
| abstract_inverted_index.limited | 51 |
| abstract_inverted_index.models. | 138 |
| abstract_inverted_index.playing | 11 |
| abstract_inverted_index.results | 148 |
| abstract_inverted_index.thereby | 131 |
| abstract_inverted_index.toolkit | 65 |
| abstract_inverted_index.133,000x | 95 |
| abstract_inverted_index.Dynamics | 45 |
| abstract_inverted_index.Fe-Cr-Co | 152 |
| abstract_inverted_index.achieves | 92 |
| abstract_inverted_index.bridging | 169 |
| abstract_inverted_index.concept, | 143 |
| abstract_inverted_index.critical | 13 |
| abstract_inverted_index.dramatic | 163 |
| abstract_inverted_index.enabling | 132 |
| abstract_inverted_index.external | 122 |
| abstract_inverted_index.flexible | 111 |
| abstract_inverted_index.hindered | 49 |
| abstract_inverted_index.insights | 171 |
| abstract_inverted_index.methods, | 20 |
| abstract_inverted_index.speedups | 93 |
| abstract_inverted_index.workflow | 112 |
| abstract_inverted_index.(SCRAPs), | 40 |
| abstract_inverted_index.Automated | 34 |
| abstract_inverted_index.Theoretic | 33 |
| abstract_inverted_index.accuracy. | 106 |
| abstract_inverted_index.efficient | 180 |
| abstract_inverted_index.exceeding | 94 |
| abstract_inverted_index.generator | 25 |
| abstract_inverted_index.introduce | 61 |
| abstract_inverted_index.leverages | 72 |
| abstract_inverted_index.practical | 173 |
| abstract_inverted_index.realistic | 134 |
| abstract_inverted_index.response, | 59 |
| abstract_inverted_index.ATAT-mcsqs | 99 |
| abstract_inverted_index.Structures | 29 |
| abstract_inverted_index.Super-cell | 37 |
| abstract_inverted_index.functional | 128 |
| abstract_inverted_index.literature | 147 |
| abstract_inverted_index.minutes-an | 155 |
| abstract_inverted_index.replicated | 146 |
| abstract_inverted_index.Quasirandom | 28 |
| abstract_inverted_index.Traditional | 19 |
| abstract_inverted_index.algorithms, | 77 |
| abstract_inverted_index.approaches. | 161 |
| abstract_inverted_index.determining | 16 |
| abstract_inverted_index.efficiency. | 86 |
| abstract_inverted_index.improvement | 157 |
| abstract_inverted_index.incorporate | 117 |
| abstract_inverted_index.incremental | 78 |
| abstract_inverted_index.maintaining | 104 |
| abstract_inverted_index.properties. | 18 |
| abstract_inverted_index.short-range | 8 |
| abstract_inverted_index.simulations | 123 |
| abstract_inverted_index.theoretical | 170 |
| abstract_inverted_index.256,000-atom | 151 |
| abstract_inverted_index.Approximates | 39 |
| abstract_inverted_index.High-Entropy | 0 |
| abstract_inverted_index.Python-based | 64 |
| abstract_inverted_index.acceleration | 83, 164 |
| abstract_inverted_index.constructing | 88 |
| abstract_inverted_index.customizable | 136 |
| abstract_inverted_index.successfully | 145 |
| abstract_inverted_index.(ATAT-mcsqs), | 36 |
| abstract_inverted_index.applications, | 174 |
| abstract_inverted_index.computational | 56 |
| abstract_inverted_index.computations, | 80 |
| abstract_inverted_index.interactions, | 6 |
| abstract_inverted_index.possibilities | 167 |
| abstract_inverted_index.respectively, | 102 |
| abstract_inverted_index.unprecedented | 85 |
| abstract_inverted_index.Carlo-Molecular | 44 |
| abstract_inverted_index.next-generation | 183 |
| abstract_inverted_index.high-performance | 68 |
| abstract_inverted_index.order-of-magnitude | 156 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |