Short-Term Load Forecasting for Smart Home Appliances with Sequence to Sequence Learning Article Swipe
Mina Razghandi
,
Hao Zhou
,
Melike Erol‐Kantarci
,
Damla Turgut
·
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1109/icc42927.2021.9500767
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1109/icc42927.2021.9500767
Appliance-level load forecasting plays a critical role in residential energy management, besides having significant importance for ancillary services performed by the utilities. In this paper, we propose to use an LSTM-based sequence-to-sequence (seq2seq) learning model that can capture the load profiles of appliances. We use a real dataset collected fromfour residential buildings and compare our proposed schemewith three other techniques, namely VARMA, Dilated One Dimensional Convolutional Neural Network, and an LSTM model.The results show that the proposed LSTM-based seq2seq model outperforms other techniques in terms of prediction error in most cases.
Related Topics
Concepts
Sequence (biology)
Term (time)
Computer science
Convolutional neural network
Artificial intelligence
Recurrent neural network
Time sequence
Deep learning
Energy (signal processing)
Long short term memory
Machine learning
Sequence learning
Artificial neural network
Statistics
Mathematics
Biology
Quantum mechanics
Physics
Genetics
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1109/icc42927.2021.9500767
- OA Status
- green
- Cited By
- 3
- References
- 21
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W3176805851
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3176805851Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/icc42927.2021.9500767Digital Object Identifier
- Title
-
Short-Term Load Forecasting for Smart Home Appliances with Sequence to Sequence LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-06-01Full publication date if available
- Authors
-
Mina Razghandi, Hao Zhou, Melike Erol‐Kantarci, Damla TurgutList of authors in order
- Landing page
-
https://doi.org/10.1109/icc42927.2021.9500767Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2106.15348Direct OA link when available
- Concepts
-
Sequence (biology), Term (time), Computer science, Convolutional neural network, Artificial intelligence, Recurrent neural network, Time sequence, Deep learning, Energy (signal processing), Long short term memory, Machine learning, Sequence learning, Artificial neural network, Statistics, Mathematics, Biology, Quantum mechanics, Physics, GeneticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2022: 1, 2021: 1Per-year citation counts (last 5 years)
- References (count)
-
21Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3176805851 |
|---|---|
| doi | https://doi.org/10.1109/icc42927.2021.9500767 |
| ids.doi | https://doi.org/10.48550/arxiv.2106.15348 |
| ids.mag | 3176805851 |
| ids.openalex | https://openalex.org/W3176805851 |
| fwci | 0.27504427 |
| type | preprint |
| title | Short-Term Load Forecasting for Smart Home Appliances with Sequence to Sequence Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11052 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Energy Load and Power Forecasting |
| topics[1].id | https://openalex.org/T10603 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9997000098228455 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Smart Grid Energy Management |
| topics[2].id | https://openalex.org/T10121 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9965000152587891 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2215 |
| topics[2].subfield.display_name | Building and Construction |
| topics[2].display_name | Building Energy and Comfort Optimization |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2778112365 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7928144335746765 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3511065 |
| concepts[0].display_name | Sequence (biology) |
| concepts[1].id | https://openalex.org/C61797465 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7351077198982239 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1188986 |
| concepts[1].display_name | Term (time) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.7203897833824158 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C81363708 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6017464399337769 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[3].display_name | Convolutional neural network |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5584953427314758 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C147168706 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5566719174385071 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1457734 |
| concepts[5].display_name | Recurrent neural network |
| concepts[6].id | https://openalex.org/C3020136221 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5234546065330505 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q186588 |
| concepts[6].display_name | Time sequence |
| concepts[7].id | https://openalex.org/C108583219 |
| concepts[7].level | 2 |
| concepts[7].score | 0.49791455268859863 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[7].display_name | Deep learning |
| concepts[8].id | https://openalex.org/C186370098 |
| concepts[8].level | 2 |
| concepts[8].score | 0.456545352935791 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q442787 |
| concepts[8].display_name | Energy (signal processing) |
| concepts[9].id | https://openalex.org/C133488467 |
| concepts[9].level | 4 |
| concepts[9].score | 0.4439803659915924 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q6673524 |
| concepts[9].display_name | Long short term memory |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.44317302107810974 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C40506919 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4394156336784363 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7452469 |
| concepts[11].display_name | Sequence learning |
| concepts[12].id | https://openalex.org/C50644808 |
| concepts[12].level | 2 |
| concepts[12].score | 0.42128488421440125 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[12].display_name | Artificial neural network |
| concepts[13].id | https://openalex.org/C105795698 |
| concepts[13].level | 1 |
| concepts[13].score | 0.08482301235198975 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[13].display_name | Statistics |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C86803240 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[15].display_name | Biology |
| concepts[16].id | https://openalex.org/C62520636 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[16].display_name | Quantum mechanics |
| concepts[17].id | https://openalex.org/C121332964 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[17].display_name | Physics |
| concepts[18].id | https://openalex.org/C54355233 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[18].display_name | Genetics |
| keywords[0].id | https://openalex.org/keywords/sequence |
| keywords[0].score | 0.7928144335746765 |
| keywords[0].display_name | Sequence (biology) |
| keywords[1].id | https://openalex.org/keywords/term |
| keywords[1].score | 0.7351077198982239 |
| keywords[1].display_name | Term (time) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.7203897833824158 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[3].score | 0.6017464399337769 |
| keywords[3].display_name | Convolutional neural network |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5584953427314758 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/recurrent-neural-network |
| keywords[5].score | 0.5566719174385071 |
| keywords[5].display_name | Recurrent neural network |
| keywords[6].id | https://openalex.org/keywords/time-sequence |
| keywords[6].score | 0.5234546065330505 |
| keywords[6].display_name | Time sequence |
| keywords[7].id | https://openalex.org/keywords/deep-learning |
| keywords[7].score | 0.49791455268859863 |
| keywords[7].display_name | Deep learning |
| keywords[8].id | https://openalex.org/keywords/energy |
| keywords[8].score | 0.456545352935791 |
| keywords[8].display_name | Energy (signal processing) |
| keywords[9].id | https://openalex.org/keywords/long-short-term-memory |
| keywords[9].score | 0.4439803659915924 |
| keywords[9].display_name | Long short term memory |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.44317302107810974 |
| keywords[10].display_name | Machine learning |
| keywords[11].id | https://openalex.org/keywords/sequence-learning |
| keywords[11].score | 0.4394156336784363 |
| keywords[11].display_name | Sequence learning |
| keywords[12].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[12].score | 0.42128488421440125 |
| keywords[12].display_name | Artificial neural network |
| keywords[13].id | https://openalex.org/keywords/statistics |
| keywords[13].score | 0.08482301235198975 |
| keywords[13].display_name | Statistics |
| language | en |
| locations[0].id | doi:10.1109/icc42927.2021.9500767 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | ICC 2021 - IEEE International Conference on Communications |
| locations[0].landing_page_url | https://doi.org/10.1109/icc42927.2021.9500767 |
| locations[1].id | pmh:oai:arXiv.org:2106.15348 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/2106.15348 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2106.15348 |
| locations[2].id | mag:3176805851 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | arXiv (Cornell University) |
| locations[2].landing_page_url | http://export.arxiv.org/pdf/2106.15348 |
| locations[3].id | doi:10.48550/arxiv.2106.15348 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400194 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | arXiv (Cornell University) |
| locations[3].source.host_organization | https://openalex.org/I205783295 |
| locations[3].source.host_organization_name | Cornell University |
| locations[3].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://doi.org/10.48550/arxiv.2106.15348 |
| indexed_in | arxiv, crossref, datacite |
| authorships[0].author.id | https://openalex.org/A5070594349 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0649-3988 |
| authorships[0].author.display_name | Mina Razghandi |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mina Razghandi |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5080850676 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5511-4609 |
| authorships[1].author.display_name | Hao Zhou |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hao Zhou |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5089891162 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6787-8457 |
| authorships[2].author.display_name | Melike Erol‐Kantarci |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Melike Erol-Kantarci |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5068888332 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8635-7198 |
| authorships[3].author.display_name | Damla Turgut |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Damla Turgut |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2106.15348 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Short-Term Load Forecasting for Smart Home Appliances with Sequence to Sequence Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11052 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Energy Load and Power Forecasting |
| related_works | https://openalex.org/W3129066430, https://openalex.org/W2969308181, https://openalex.org/W2995183636, https://openalex.org/W3128115421, https://openalex.org/W3204456588, https://openalex.org/W3090661556, https://openalex.org/W3122537394, https://openalex.org/W3163623402, https://openalex.org/W3163089459, https://openalex.org/W3131110071, https://openalex.org/W3137984853, https://openalex.org/W2809317444, https://openalex.org/W3095508225, https://openalex.org/W3017073098, https://openalex.org/W2982822348, https://openalex.org/W3088036242, https://openalex.org/W3014191625, https://openalex.org/W3130388336, https://openalex.org/W3137803082, https://openalex.org/W3019222575 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2021 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | pmh:oai:arXiv.org:2106.15348 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2106.15348 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2106.15348 |
| primary_location.id | doi:10.1109/icc42927.2021.9500767 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | ICC 2021 - IEEE International Conference on Communications |
| primary_location.landing_page_url | https://doi.org/10.1109/icc42927.2021.9500767 |
| publication_date | 2021-06-01 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W6790800781, https://openalex.org/W6679436768, https://openalex.org/W2754029504, https://openalex.org/W2344130254, https://openalex.org/W2965525929, https://openalex.org/W2971126087, https://openalex.org/W2974046511, https://openalex.org/W2970408831, https://openalex.org/W1990571958, https://openalex.org/W2945815269, https://openalex.org/W2597866042, https://openalex.org/W2782902016, https://openalex.org/W2742473260, https://openalex.org/W2982252459, https://openalex.org/W6737454906, https://openalex.org/W2754252319, https://openalex.org/W2804820036, https://openalex.org/W3043685378, https://openalex.org/W2130942839, https://openalex.org/W3129666199, https://openalex.org/W2613278213 |
| referenced_works_count | 21 |
| abstract_inverted_index.a | 4, 45 |
| abstract_inverted_index.In | 22 |
| abstract_inverted_index.We | 43 |
| abstract_inverted_index.an | 29, 69 |
| abstract_inverted_index.by | 19 |
| abstract_inverted_index.in | 7, 83, 88 |
| abstract_inverted_index.of | 41, 85 |
| abstract_inverted_index.to | 27 |
| abstract_inverted_index.we | 25 |
| abstract_inverted_index.One | 63 |
| abstract_inverted_index.and | 52, 68 |
| abstract_inverted_index.can | 36 |
| abstract_inverted_index.for | 15 |
| abstract_inverted_index.our | 54 |
| abstract_inverted_index.the | 20, 38, 75 |
| abstract_inverted_index.use | 28, 44 |
| abstract_inverted_index.LSTM | 70 |
| abstract_inverted_index.load | 1, 39 |
| abstract_inverted_index.most | 89 |
| abstract_inverted_index.real | 46 |
| abstract_inverted_index.role | 6 |
| abstract_inverted_index.show | 73 |
| abstract_inverted_index.that | 35, 74 |
| abstract_inverted_index.this | 23 |
| abstract_inverted_index.error | 87 |
| abstract_inverted_index.model | 34, 79 |
| abstract_inverted_index.other | 58, 81 |
| abstract_inverted_index.plays | 3 |
| abstract_inverted_index.terms | 84 |
| abstract_inverted_index.three | 57 |
| abstract_inverted_index.Neural | 66 |
| abstract_inverted_index.VARMA, | 61 |
| abstract_inverted_index.cases. | 90 |
| abstract_inverted_index.energy | 9 |
| abstract_inverted_index.having | 12 |
| abstract_inverted_index.namely | 60 |
| abstract_inverted_index.paper, | 24 |
| abstract_inverted_index.Dilated | 62 |
| abstract_inverted_index.besides | 11 |
| abstract_inverted_index.capture | 37 |
| abstract_inverted_index.compare | 53 |
| abstract_inverted_index.dataset | 47 |
| abstract_inverted_index.propose | 26 |
| abstract_inverted_index.results | 72 |
| abstract_inverted_index.seq2seq | 78 |
| abstract_inverted_index.Network, | 67 |
| abstract_inverted_index.critical | 5 |
| abstract_inverted_index.fromfour | 49 |
| abstract_inverted_index.learning | 33 |
| abstract_inverted_index.profiles | 40 |
| abstract_inverted_index.proposed | 55, 76 |
| abstract_inverted_index.services | 17 |
| abstract_inverted_index.(seq2seq) | 32 |
| abstract_inverted_index.ancillary | 16 |
| abstract_inverted_index.buildings | 51 |
| abstract_inverted_index.collected | 48 |
| abstract_inverted_index.model.The | 71 |
| abstract_inverted_index.performed | 18 |
| abstract_inverted_index.LSTM-based | 30, 77 |
| abstract_inverted_index.importance | 14 |
| abstract_inverted_index.prediction | 86 |
| abstract_inverted_index.schemewith | 56 |
| abstract_inverted_index.techniques | 82 |
| abstract_inverted_index.utilities. | 21 |
| abstract_inverted_index.Dimensional | 64 |
| abstract_inverted_index.appliances. | 42 |
| abstract_inverted_index.forecasting | 2 |
| abstract_inverted_index.management, | 10 |
| abstract_inverted_index.outperforms | 80 |
| abstract_inverted_index.residential | 8, 50 |
| abstract_inverted_index.significant | 13 |
| abstract_inverted_index.techniques, | 59 |
| abstract_inverted_index.Convolutional | 65 |
| abstract_inverted_index.Appliance-level | 0 |
| abstract_inverted_index.sequence-to-sequence | 31 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.8700000047683716 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.56633428 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |