Short Term Power load Forecasting Considering Meteorological Factors Article Swipe
To forecast short-term power load, we first establish GM (1, 1) grey forecasting model and test the correlation of the predicted values.Considering the impact of meteorological factors on modern power system, we establish a load forecasting model based on principal component analysis and multiple linear regression analysis.Then we compare the two kinds of load forecasting model by the precision of curve fitting with the actual load.The results show that the accurate of short-term load forecasting model included in meteorological factors is higher, we also introduce an assessment standard to provide evidence.
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.2991/mecs-17.2017.27
- https://download.atlantis-press.com/article/25878966.pdf
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2734826296
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2734826296Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2991/mecs-17.2017.27Digital Object Identifier
- Title
-
Short Term Power load Forecasting Considering Meteorological FactorsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2017Year of publication
- Publication date
-
2017-01-01Full publication date if available
- Authors
-
Jing LuoList of authors in order
- Landing page
-
https://doi.org/10.2991/mecs-17.2017.27Publisher landing page
- PDF URL
-
https://download.atlantis-press.com/article/25878966.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://download.atlantis-press.com/article/25878966.pdfDirect OA link when available
- Concepts
-
Term (time), Computer science, Power (physics), Meteorology, Environmental science, Physics, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2734826296 |
|---|---|
| doi | https://doi.org/10.2991/mecs-17.2017.27 |
| ids.doi | https://doi.org/10.2991/mecs-17.2017.27 |
| ids.mag | 2734826296 |
| ids.openalex | https://openalex.org/W2734826296 |
| fwci | 0.0 |
| type | article |
| title | Short Term Power load Forecasting Considering Meteorological Factors |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T14276 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9247000217437744 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Power Systems and Technologies |
| topics[1].id | https://openalex.org/T12451 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9017000198364258 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Smart Grid and Power Systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C61797465 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7906766533851624 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1188986 |
| concepts[0].display_name | Term (time) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5035962462425232 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C163258240 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4502420723438263 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[2].display_name | Power (physics) |
| concepts[3].id | https://openalex.org/C153294291 |
| concepts[3].level | 1 |
| concepts[3].score | 0.38921481370925903 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[3].display_name | Meteorology |
| concepts[4].id | https://openalex.org/C39432304 |
| concepts[4].level | 0 |
| concepts[4].score | 0.3736006021499634 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[4].display_name | Environmental science |
| concepts[5].id | https://openalex.org/C121332964 |
| concepts[5].level | 0 |
| concepts[5].score | 0.07068079710006714 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[5].display_name | Physics |
| concepts[6].id | https://openalex.org/C62520636 |
| concepts[6].level | 1 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[6].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/term |
| keywords[0].score | 0.7906766533851624 |
| keywords[0].display_name | Term (time) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5035962462425232 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/power |
| keywords[2].score | 0.4502420723438263 |
| keywords[2].display_name | Power (physics) |
| keywords[3].id | https://openalex.org/keywords/meteorology |
| keywords[3].score | 0.38921481370925903 |
| keywords[3].display_name | Meteorology |
| keywords[4].id | https://openalex.org/keywords/environmental-science |
| keywords[4].score | 0.3736006021499634 |
| keywords[4].display_name | Environmental science |
| keywords[5].id | https://openalex.org/keywords/physics |
| keywords[5].score | 0.07068079710006714 |
| keywords[5].display_name | Physics |
| language | en |
| locations[0].id | doi:10.2991/mecs-17.2017.27 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | https://download.atlantis-press.com/article/25878966.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the 2017 2nd International Conference on Machinery, Electronics and Control Simulation (MECS 2017) |
| locations[0].landing_page_url | https://doi.org/10.2991/mecs-17.2017.27 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5101778646 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1954-5671 |
| authorships[0].author.display_name | Jing Luo |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I153473198 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of economics and management, North China Electric Power University, Baoding, Hebei, China |
| authorships[0].institutions[0].id | https://openalex.org/I153473198 |
| authorships[0].institutions[0].ror | https://ror.org/04qr5t414 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I153473198 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | North China Electric Power University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jing Luo |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of economics and management, North China Electric Power University, Baoding, Hebei, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://download.atlantis-press.com/article/25878966.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Short Term Power load Forecasting Considering Meteorological Factors |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T14276 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9247000217437744 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Power Systems and Technologies |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2382290278, https://openalex.org/W2350741829, https://openalex.org/W2130043461, https://openalex.org/W2530322880, https://openalex.org/W1596801655 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.2991/mecs-17.2017.27 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | https://download.atlantis-press.com/article/25878966.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the 2017 2nd International Conference on Machinery, Electronics and Control Simulation (MECS 2017) |
| best_oa_location.landing_page_url | https://doi.org/10.2991/mecs-17.2017.27 |
| primary_location.id | doi:10.2991/mecs-17.2017.27 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | https://download.atlantis-press.com/article/25878966.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the 2017 2nd International Conference on Machinery, Electronics and Control Simulation (MECS 2017) |
| primary_location.landing_page_url | https://doi.org/10.2991/mecs-17.2017.27 |
| publication_date | 2017-01-01 |
| publication_year | 2017 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 33 |
| abstract_inverted_index.1) | 10 |
| abstract_inverted_index.GM | 8 |
| abstract_inverted_index.To | 0 |
| abstract_inverted_index.an | 85 |
| abstract_inverted_index.by | 56 |
| abstract_inverted_index.in | 77 |
| abstract_inverted_index.is | 80 |
| abstract_inverted_index.of | 18, 24, 52, 59, 71 |
| abstract_inverted_index.on | 27, 38 |
| abstract_inverted_index.to | 88 |
| abstract_inverted_index.we | 5, 31, 47, 82 |
| abstract_inverted_index.(1, | 9 |
| abstract_inverted_index.and | 14, 42 |
| abstract_inverted_index.the | 16, 19, 22, 49, 57, 63, 69 |
| abstract_inverted_index.two | 50 |
| abstract_inverted_index.also | 83 |
| abstract_inverted_index.grey | 11 |
| abstract_inverted_index.load | 34, 53, 73 |
| abstract_inverted_index.show | 67 |
| abstract_inverted_index.test | 15 |
| abstract_inverted_index.that | 68 |
| abstract_inverted_index.with | 62 |
| abstract_inverted_index.based | 37 |
| abstract_inverted_index.curve | 60 |
| abstract_inverted_index.first | 6 |
| abstract_inverted_index.kinds | 51 |
| abstract_inverted_index.load, | 4 |
| abstract_inverted_index.model | 13, 36, 55, 75 |
| abstract_inverted_index.power | 3, 29 |
| abstract_inverted_index.actual | 64 |
| abstract_inverted_index.impact | 23 |
| abstract_inverted_index.linear | 44 |
| abstract_inverted_index.modern | 28 |
| abstract_inverted_index.compare | 48 |
| abstract_inverted_index.factors | 26, 79 |
| abstract_inverted_index.fitting | 61 |
| abstract_inverted_index.higher, | 81 |
| abstract_inverted_index.provide | 89 |
| abstract_inverted_index.results | 66 |
| abstract_inverted_index.system, | 30 |
| abstract_inverted_index.accurate | 70 |
| abstract_inverted_index.analysis | 41 |
| abstract_inverted_index.forecast | 1 |
| abstract_inverted_index.included | 76 |
| abstract_inverted_index.load.The | 65 |
| abstract_inverted_index.multiple | 43 |
| abstract_inverted_index.standard | 87 |
| abstract_inverted_index.component | 40 |
| abstract_inverted_index.establish | 7, 32 |
| abstract_inverted_index.evidence. | 90 |
| abstract_inverted_index.introduce | 84 |
| abstract_inverted_index.precision | 58 |
| abstract_inverted_index.predicted | 20 |
| abstract_inverted_index.principal | 39 |
| abstract_inverted_index.assessment | 86 |
| abstract_inverted_index.regression | 45 |
| abstract_inverted_index.short-term | 2, 72 |
| abstract_inverted_index.correlation | 17 |
| abstract_inverted_index.forecasting | 12, 35, 54, 74 |
| abstract_inverted_index.analysis.Then | 46 |
| abstract_inverted_index.meteorological | 25, 78 |
| abstract_inverted_index.values.Considering | 21 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5101778646 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 1 |
| corresponding_institution_ids | https://openalex.org/I153473198 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.7799999713897705 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile.value | 0.07543675 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |