Shortcut learning leads to sex bias in deep learning models for photoacoustic tomography Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1007/s11548-025-03370-9
Purpose Shortcut learning has been identified as a source of algorithmic unfairness in medical imaging artificial intelligence (AI), but its impact on photoacoustic tomography (PAT), particularly concerning sex bias, remains underexplored. This study investigates this issue using peripheral artery disease (PAD) diagnosis as a specific clinical application. Methods To examine the potential for sex bias due to shortcut learning in convolutional neural network (CNNs) and assess how such biases might affect diagnostic predictions, we created training and test datasets with varying PAD prevalence between sexes. Using these datasets, we explored (1) whether CNNs can classify the sex from imaging data, (2) how sex-specific prevalence shifts impact PAD diagnosis performance and underdiagnosis disparity between sexes, and (3) how similarly CNNs encode sex and PAD features. Results Our study with 147 individuals demonstrates that CNNs can classify the sex from calf muscle PAT images, achieving an AUROC of 0.75. For PAD diagnosis, models trained on data with imbalanced sex-specific disease prevalence experienced significant performance drops (up to 0.21 AUROC) when applied to balanced test sets. Additionally, greater imbalances in sex-specific prevalence within the training data exacerbated underdiagnosis disparities between sexes. Finally, we identify evidence of shortcut learning by demonstrating the effective reuse of learned feature representations between PAD diagnosis and sex classification tasks. Conclusion CNN-based models trained on PAT data may engage in shortcut learning by leveraging sex-related features, leading to biased and unreliable diagnostic predictions. Addressing demographic-specific prevalence imbalances and preventing shortcut learning is critical for developing models in the medical field that are both accurate and equitable across diverse patient populations.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s11548-025-03370-9
- https://link.springer.com/content/pdf/10.1007/s11548-025-03370-9.pdf
- OA Status
- hybrid
- References
- 28
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410234923
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4410234923Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s11548-025-03370-9Digital Object Identifier
- Title
-
Shortcut learning leads to sex bias in deep learning models for photoacoustic tomographyWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-09Full publication date if available
- Authors
-
Marcel Knopp, Christoph J Bender, Niklas Holzwarth, Yi Li, Julius Kempf, Milenko Caranovic, Ferdinand Knieling, Werner Lang, Ulrich Rother, Alexander Seitel, Lena Maier‐Hein, Kris K. DreherList of authors in order
- Landing page
-
https://doi.org/10.1007/s11548-025-03370-9Publisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/s11548-025-03370-9.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/s11548-025-03370-9.pdfDirect OA link when available
- Concepts
-
Artificial intelligence, Convolutional neural network, Machine learning, Deep learning, Feature (linguistics), Computer science, Medicine, Disease, Pathology, Linguistics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
28Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4410234923 |
|---|---|
| doi | https://doi.org/10.1007/s11548-025-03370-9 |
| ids.doi | https://doi.org/10.1007/s11548-025-03370-9 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40343639 |
| ids.openalex | https://openalex.org/W4410234923 |
| fwci | 0.0 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D000077321 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Deep Learning |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D008297 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Male |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D005260 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Female |
| mesh[4].qualifier_ui | Q000379 |
| mesh[4].descriptor_ui | D061088 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | methods |
| mesh[4].descriptor_name | Photoacoustic Techniques |
| mesh[5].qualifier_ui | Q000000981 |
| mesh[5].descriptor_ui | D058729 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | diagnostic imaging |
| mesh[5].descriptor_name | Peripheral Arterial Disease |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D063507 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Sexism |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D000368 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Aged |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D008875 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Middle Aged |
| mesh[9].qualifier_ui | Q000379 |
| mesh[9].descriptor_ui | D014054 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | methods |
| mesh[9].descriptor_name | Tomography |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D006801 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Humans |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D000077321 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Deep Learning |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D008297 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Male |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D005260 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Female |
| mesh[14].qualifier_ui | Q000379 |
| mesh[14].descriptor_ui | D061088 |
| mesh[14].is_major_topic | True |
| mesh[14].qualifier_name | methods |
| mesh[14].descriptor_name | Photoacoustic Techniques |
| mesh[15].qualifier_ui | Q000000981 |
| mesh[15].descriptor_ui | D058729 |
| mesh[15].is_major_topic | True |
| mesh[15].qualifier_name | diagnostic imaging |
| mesh[15].descriptor_name | Peripheral Arterial Disease |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D063507 |
| mesh[16].is_major_topic | True |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Sexism |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D000368 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Aged |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D008875 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Middle Aged |
| mesh[19].qualifier_ui | Q000379 |
| mesh[19].descriptor_ui | D014054 |
| mesh[19].is_major_topic | True |
| mesh[19].qualifier_name | methods |
| mesh[19].descriptor_name | Tomography |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D006801 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Humans |
| mesh[21].qualifier_ui | |
| mesh[21].descriptor_ui | D000077321 |
| mesh[21].is_major_topic | True |
| mesh[21].qualifier_name | |
| mesh[21].descriptor_name | Deep Learning |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D008297 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Male |
| mesh[23].qualifier_ui | |
| mesh[23].descriptor_ui | D005260 |
| mesh[23].is_major_topic | False |
| mesh[23].qualifier_name | |
| mesh[23].descriptor_name | Female |
| mesh[24].qualifier_ui | Q000379 |
| mesh[24].descriptor_ui | D061088 |
| mesh[24].is_major_topic | True |
| mesh[24].qualifier_name | methods |
| mesh[24].descriptor_name | Photoacoustic Techniques |
| mesh[25].qualifier_ui | Q000000981 |
| mesh[25].descriptor_ui | D058729 |
| mesh[25].is_major_topic | True |
| mesh[25].qualifier_name | diagnostic imaging |
| mesh[25].descriptor_name | Peripheral Arterial Disease |
| mesh[26].qualifier_ui | |
| mesh[26].descriptor_ui | D063507 |
| mesh[26].is_major_topic | True |
| mesh[26].qualifier_name | |
| mesh[26].descriptor_name | Sexism |
| mesh[27].qualifier_ui | |
| mesh[27].descriptor_ui | D000368 |
| mesh[27].is_major_topic | False |
| mesh[27].qualifier_name | |
| mesh[27].descriptor_name | Aged |
| mesh[28].qualifier_ui | |
| mesh[28].descriptor_ui | D008875 |
| mesh[28].is_major_topic | False |
| mesh[28].qualifier_name | |
| mesh[28].descriptor_name | Middle Aged |
| mesh[29].qualifier_ui | Q000379 |
| mesh[29].descriptor_ui | D014054 |
| mesh[29].is_major_topic | True |
| mesh[29].qualifier_name | methods |
| mesh[29].descriptor_name | Tomography |
| type | article |
| title | Shortcut learning leads to sex bias in deep learning models for photoacoustic tomography |
| biblio.issue | 7 |
| biblio.volume | 20 |
| biblio.last_page | 1333 |
| biblio.first_page | 1325 |
| grants[0].funder | https://openalex.org/F4320338453 |
| grants[0].award_id | 101002198 |
| grants[0].funder_display_name | HORIZON EUROPE European Research Council |
| topics[0].id | https://openalex.org/T12015 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2204 |
| topics[0].subfield.display_name | Biomedical Engineering |
| topics[0].display_name | Photoacoustic and Ultrasonic Imaging |
| topics[1].id | https://openalex.org/T10285 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9761000275611877 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2724 |
| topics[1].subfield.display_name | Internal Medicine |
| topics[1].display_name | Venous Thromboembolism Diagnosis and Management |
| topics[2].id | https://openalex.org/T12994 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.972599983215332 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Infrared Thermography in Medicine |
| funders[0].id | https://openalex.org/F4320338453 |
| funders[0].ror | |
| funders[0].display_name | HORIZON EUROPE European Research Council |
| is_xpac | False |
| apc_list.value | 3390 |
| apc_list.currency | EUR |
| apc_list.value_usd | 4390 |
| apc_paid.value | 3390 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 4390 |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.6609406471252441 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C81363708 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5953861474990845 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[1].display_name | Convolutional neural network |
| concepts[2].id | https://openalex.org/C119857082 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5911411046981812 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[2].display_name | Machine learning |
| concepts[3].id | https://openalex.org/C108583219 |
| concepts[3].level | 2 |
| concepts[3].score | 0.573296308517456 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[3].display_name | Deep learning |
| concepts[4].id | https://openalex.org/C2776401178 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5363792777061462 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[4].display_name | Feature (linguistics) |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.5073525309562683 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C71924100 |
| concepts[6].level | 0 |
| concepts[6].score | 0.47571760416030884 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[6].display_name | Medicine |
| concepts[7].id | https://openalex.org/C2779134260 |
| concepts[7].level | 2 |
| concepts[7].score | 0.468448668718338 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12136 |
| concepts[7].display_name | Disease |
| concepts[8].id | https://openalex.org/C142724271 |
| concepts[8].level | 1 |
| concepts[8].score | 0.21242567896842957 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[8].display_name | Pathology |
| concepts[9].id | https://openalex.org/C41895202 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[9].display_name | Linguistics |
| concepts[10].id | https://openalex.org/C138885662 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[10].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.6609406471252441 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[1].score | 0.5953861474990845 |
| keywords[1].display_name | Convolutional neural network |
| keywords[2].id | https://openalex.org/keywords/machine-learning |
| keywords[2].score | 0.5911411046981812 |
| keywords[2].display_name | Machine learning |
| keywords[3].id | https://openalex.org/keywords/deep-learning |
| keywords[3].score | 0.573296308517456 |
| keywords[3].display_name | Deep learning |
| keywords[4].id | https://openalex.org/keywords/feature |
| keywords[4].score | 0.5363792777061462 |
| keywords[4].display_name | Feature (linguistics) |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.5073525309562683 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/medicine |
| keywords[6].score | 0.47571760416030884 |
| keywords[6].display_name | Medicine |
| keywords[7].id | https://openalex.org/keywords/disease |
| keywords[7].score | 0.468448668718338 |
| keywords[7].display_name | Disease |
| keywords[8].id | https://openalex.org/keywords/pathology |
| keywords[8].score | 0.21242567896842957 |
| keywords[8].display_name | Pathology |
| language | en |
| locations[0].id | doi:10.1007/s11548-025-03370-9 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S181408163 |
| locations[0].source.issn | 1861-6410, 1861-6429 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1861-6410 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Computer Assisted Radiology and Surgery |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/s11548-025-03370-9.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Computer Assisted Radiology and Surgery |
| locations[0].landing_page_url | https://doi.org/10.1007/s11548-025-03370-9 |
| locations[1].id | pmid:40343639 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | International journal of computer assisted radiology and surgery |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40343639 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:12226672 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Int J Comput Assist Radiol Surg |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12226672 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5111118801 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Marcel Knopp |
| authorships[0].countries | DE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I17937529, https://openalex.org/I223822909 |
| authorships[0].affiliations[0].raw_affiliation_string | Division of Intelligent Medical Systems (IMSY), German Cancer Research Center (DKFZ), Heidelberg, Germany. [email protected]. |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I223822909 |
| authorships[0].affiliations[1].raw_affiliation_string | Faculty of Mathematics and Computer Science, Heidelberg University, Heidelberg, Germany. [email protected]. |
| authorships[0].institutions[0].id | https://openalex.org/I17937529 |
| authorships[0].institutions[0].ror | https://ror.org/04cdgtt98 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I1305996414, https://openalex.org/I17937529 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | German Cancer Research Center |
| authorships[0].institutions[1].id | https://openalex.org/I223822909 |
| authorships[0].institutions[1].ror | https://ror.org/038t36y30 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I223822909 |
| authorships[0].institutions[1].country_code | DE |
| authorships[0].institutions[1].display_name | Heidelberg University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Marcel Knopp |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Division of Intelligent Medical Systems (IMSY), German Cancer Research Center (DKFZ), Heidelberg, Germany. [email protected]., Faculty of Mathematics and Computer Science, Heidelberg University, Heidelberg, Germany. [email protected]. |
| authorships[1].author.id | https://openalex.org/A5084119755 |
| authorships[1].author.orcid | https://orcid.org/0009-0009-5432-774X |
| authorships[1].author.display_name | Christoph J Bender |
| authorships[1].countries | DE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I223822909, https://openalex.org/I2802164966 |
| authorships[1].affiliations[0].raw_affiliation_string | Medical Faculty, Heidelberg University, Heidelberg, Germany. |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I17937529, https://openalex.org/I223822909 |
| authorships[1].affiliations[1].raw_affiliation_string | Division of Intelligent Medical Systems (IMSY), German Cancer Research Center (DKFZ), Heidelberg, Germany. |
| authorships[1].institutions[0].id | https://openalex.org/I17937529 |
| authorships[1].institutions[0].ror | https://ror.org/04cdgtt98 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I1305996414, https://openalex.org/I17937529 |
| authorships[1].institutions[0].country_code | DE |
| authorships[1].institutions[0].display_name | German Cancer Research Center |
| authorships[1].institutions[1].id | https://openalex.org/I223822909 |
| authorships[1].institutions[1].ror | https://ror.org/038t36y30 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I223822909 |
| authorships[1].institutions[1].country_code | DE |
| authorships[1].institutions[1].display_name | Heidelberg University |
| authorships[1].institutions[2].id | https://openalex.org/I2802164966 |
| authorships[1].institutions[2].ror | https://ror.org/013czdx64 |
| authorships[1].institutions[2].type | healthcare |
| authorships[1].institutions[2].lineage | https://openalex.org/I2802164966 |
| authorships[1].institutions[2].country_code | DE |
| authorships[1].institutions[2].display_name | University Hospital Heidelberg |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Christoph J Bender |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Division of Intelligent Medical Systems (IMSY), German Cancer Research Center (DKFZ), Heidelberg, Germany., Medical Faculty, Heidelberg University, Heidelberg, Germany. |
| authorships[2].author.id | https://openalex.org/A5021804591 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4440-2047 |
| authorships[2].author.display_name | Niklas Holzwarth |
| authorships[2].countries | DE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I17937529, https://openalex.org/I223822909 |
| authorships[2].affiliations[0].raw_affiliation_string | Division of Intelligent Medical Systems (IMSY), German Cancer Research Center (DKFZ), Heidelberg, Germany. |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I223822909 |
| authorships[2].affiliations[1].raw_affiliation_string | Faculty of Mathematics and Computer Science, Heidelberg University, Heidelberg, Germany. |
| authorships[2].institutions[0].id | https://openalex.org/I17937529 |
| authorships[2].institutions[0].ror | https://ror.org/04cdgtt98 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I1305996414, https://openalex.org/I17937529 |
| authorships[2].institutions[0].country_code | DE |
| authorships[2].institutions[0].display_name | German Cancer Research Center |
| authorships[2].institutions[1].id | https://openalex.org/I223822909 |
| authorships[2].institutions[1].ror | https://ror.org/038t36y30 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I223822909 |
| authorships[2].institutions[1].country_code | DE |
| authorships[2].institutions[1].display_name | Heidelberg University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Niklas Holzwarth |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Division of Intelligent Medical Systems (IMSY), German Cancer Research Center (DKFZ), Heidelberg, Germany., Faculty of Mathematics and Computer Science, Heidelberg University, Heidelberg, Germany. |
| authorships[3].author.id | https://openalex.org/A5100421757 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2304-5802 |
| authorships[3].author.display_name | Yi Li |
| authorships[3].countries | DE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I181369854, https://openalex.org/I4210088053 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany. |
| authorships[3].institutions[0].id | https://openalex.org/I181369854 |
| authorships[3].institutions[0].ror | https://ror.org/00f7hpc57 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I181369854 |
| authorships[3].institutions[0].country_code | DE |
| authorships[3].institutions[0].display_name | Friedrich-Alexander-Universität Erlangen-Nürnberg |
| authorships[3].institutions[1].id | https://openalex.org/I4210088053 |
| authorships[3].institutions[1].ror | https://ror.org/0030f2a11 |
| authorships[3].institutions[1].type | healthcare |
| authorships[3].institutions[1].lineage | https://openalex.org/I4210088053 |
| authorships[3].institutions[1].country_code | DE |
| authorships[3].institutions[1].display_name | Universitätsklinikum Erlangen |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yi Li |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany. |
| authorships[4].author.id | https://openalex.org/A5113061136 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7036-6310 |
| authorships[4].author.display_name | Julius Kempf |
| authorships[4].countries | DE |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I181369854, https://openalex.org/I4210088053 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany. |
| authorships[4].institutions[0].id | https://openalex.org/I181369854 |
| authorships[4].institutions[0].ror | https://ror.org/00f7hpc57 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I181369854 |
| authorships[4].institutions[0].country_code | DE |
| authorships[4].institutions[0].display_name | Friedrich-Alexander-Universität Erlangen-Nürnberg |
| authorships[4].institutions[1].id | https://openalex.org/I4210088053 |
| authorships[4].institutions[1].ror | https://ror.org/0030f2a11 |
| authorships[4].institutions[1].type | healthcare |
| authorships[4].institutions[1].lineage | https://openalex.org/I4210088053 |
| authorships[4].institutions[1].country_code | DE |
| authorships[4].institutions[1].display_name | Universitätsklinikum Erlangen |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Julius Kempf |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany. |
| authorships[5].author.id | https://openalex.org/A5093091413 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Milenko Caranovic |
| authorships[5].countries | DE |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I181369854, https://openalex.org/I4210088053 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany. |
| authorships[5].institutions[0].id | https://openalex.org/I181369854 |
| authorships[5].institutions[0].ror | https://ror.org/00f7hpc57 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I181369854 |
| authorships[5].institutions[0].country_code | DE |
| authorships[5].institutions[0].display_name | Friedrich-Alexander-Universität Erlangen-Nürnberg |
| authorships[5].institutions[1].id | https://openalex.org/I4210088053 |
| authorships[5].institutions[1].ror | https://ror.org/0030f2a11 |
| authorships[5].institutions[1].type | healthcare |
| authorships[5].institutions[1].lineage | https://openalex.org/I4210088053 |
| authorships[5].institutions[1].country_code | DE |
| authorships[5].institutions[1].display_name | Universitätsklinikum Erlangen |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Milenko Caranovic |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany. |
| authorships[6].author.id | https://openalex.org/A5042005180 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-3535-2626 |
| authorships[6].author.display_name | Ferdinand Knieling |
| authorships[6].countries | DE |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210088053 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, FAU, Erlangen, Germany. |
| authorships[6].institutions[0].id | https://openalex.org/I4210088053 |
| authorships[6].institutions[0].ror | https://ror.org/0030f2a11 |
| authorships[6].institutions[0].type | healthcare |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210088053 |
| authorships[6].institutions[0].country_code | DE |
| authorships[6].institutions[0].display_name | Universitätsklinikum Erlangen |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Ferdinand Knieling |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, FAU, Erlangen, Germany. |
| authorships[7].author.id | https://openalex.org/A5022323792 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-4114-7589 |
| authorships[7].author.display_name | Werner Lang |
| authorships[7].countries | DE |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I181369854, https://openalex.org/I4210088053 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany. |
| authorships[7].institutions[0].id | https://openalex.org/I181369854 |
| authorships[7].institutions[0].ror | https://ror.org/00f7hpc57 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I181369854 |
| authorships[7].institutions[0].country_code | DE |
| authorships[7].institutions[0].display_name | Friedrich-Alexander-Universität Erlangen-Nürnberg |
| authorships[7].institutions[1].id | https://openalex.org/I4210088053 |
| authorships[7].institutions[1].ror | https://ror.org/0030f2a11 |
| authorships[7].institutions[1].type | healthcare |
| authorships[7].institutions[1].lineage | https://openalex.org/I4210088053 |
| authorships[7].institutions[1].country_code | DE |
| authorships[7].institutions[1].display_name | Universitätsklinikum Erlangen |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Werner Lang |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany. |
| authorships[8].author.id | https://openalex.org/A5061481045 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-4016-5673 |
| authorships[8].author.display_name | Ulrich Rother |
| authorships[8].countries | DE |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I181369854, https://openalex.org/I4210088053 |
| authorships[8].affiliations[0].raw_affiliation_string | Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany. |
| authorships[8].institutions[0].id | https://openalex.org/I181369854 |
| authorships[8].institutions[0].ror | https://ror.org/00f7hpc57 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I181369854 |
| authorships[8].institutions[0].country_code | DE |
| authorships[8].institutions[0].display_name | Friedrich-Alexander-Universität Erlangen-Nürnberg |
| authorships[8].institutions[1].id | https://openalex.org/I4210088053 |
| authorships[8].institutions[1].ror | https://ror.org/0030f2a11 |
| authorships[8].institutions[1].type | healthcare |
| authorships[8].institutions[1].lineage | https://openalex.org/I4210088053 |
| authorships[8].institutions[1].country_code | DE |
| authorships[8].institutions[1].display_name | Universitätsklinikum Erlangen |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Ulrich Rother |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany. |
| authorships[9].author.id | https://openalex.org/A5080028621 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-5919-9646 |
| authorships[9].author.display_name | Alexander Seitel |
| authorships[9].countries | DE |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I223822909, https://openalex.org/I2802164966, https://openalex.org/I4210111460 |
| authorships[9].affiliations[0].raw_affiliation_string | National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and University Hospital Heidelberg, Heidelberg, Germany. |
| authorships[9].affiliations[1].institution_ids | https://openalex.org/I17937529, https://openalex.org/I223822909 |
| authorships[9].affiliations[1].raw_affiliation_string | Division of Intelligent Medical Systems (IMSY), German Cancer Research Center (DKFZ), Heidelberg, Germany. |
| authorships[9].institutions[0].id | https://openalex.org/I17937529 |
| authorships[9].institutions[0].ror | https://ror.org/04cdgtt98 |
| authorships[9].institutions[0].type | facility |
| authorships[9].institutions[0].lineage | https://openalex.org/I1305996414, https://openalex.org/I17937529 |
| authorships[9].institutions[0].country_code | DE |
| authorships[9].institutions[0].display_name | German Cancer Research Center |
| authorships[9].institutions[1].id | https://openalex.org/I223822909 |
| authorships[9].institutions[1].ror | https://ror.org/038t36y30 |
| authorships[9].institutions[1].type | education |
| authorships[9].institutions[1].lineage | https://openalex.org/I223822909 |
| authorships[9].institutions[1].country_code | DE |
| authorships[9].institutions[1].display_name | Heidelberg University |
| authorships[9].institutions[2].id | https://openalex.org/I4210111460 |
| authorships[9].institutions[2].ror | https://ror.org/01txwsw02 |
| authorships[9].institutions[2].type | healthcare |
| authorships[9].institutions[2].lineage | https://openalex.org/I4210111460 |
| authorships[9].institutions[2].country_code | DE |
| authorships[9].institutions[2].display_name | National Center for Tumor Diseases |
| authorships[9].institutions[3].id | https://openalex.org/I2802164966 |
| authorships[9].institutions[3].ror | https://ror.org/013czdx64 |
| authorships[9].institutions[3].type | healthcare |
| authorships[9].institutions[3].lineage | https://openalex.org/I2802164966 |
| authorships[9].institutions[3].country_code | DE |
| authorships[9].institutions[3].display_name | University Hospital Heidelberg |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Alexander Seitel |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Division of Intelligent Medical Systems (IMSY), German Cancer Research Center (DKFZ), Heidelberg, Germany., National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and University Hospital Heidelberg, Heidelberg, Germany. |
| authorships[10].author.id | https://openalex.org/A5023493127 |
| authorships[10].author.orcid | https://orcid.org/0000-0003-4910-9368 |
| authorships[10].author.display_name | Lena Maier‐Hein |
| authorships[10].countries | DE |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I223822909 |
| authorships[10].affiliations[0].raw_affiliation_string | Faculty of Mathematics and Computer Science, Heidelberg University, Heidelberg, Germany. |
| authorships[10].affiliations[1].institution_ids | https://openalex.org/I223822909, https://openalex.org/I2802164966, https://openalex.org/I4210111460 |
| authorships[10].affiliations[1].raw_affiliation_string | National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and University Hospital Heidelberg, Heidelberg, Germany. |
| authorships[10].affiliations[2].institution_ids | https://openalex.org/I17937529, https://openalex.org/I223822909 |
| authorships[10].affiliations[2].raw_affiliation_string | Division of Intelligent Medical Systems (IMSY), German Cancer Research Center (DKFZ), Heidelberg, Germany. |
| authorships[10].affiliations[3].institution_ids | https://openalex.org/I223822909, https://openalex.org/I2802164966 |
| authorships[10].affiliations[3].raw_affiliation_string | Medical Faculty, Heidelberg University, Heidelberg, Germany. |
| authorships[10].institutions[0].id | https://openalex.org/I17937529 |
| authorships[10].institutions[0].ror | https://ror.org/04cdgtt98 |
| authorships[10].institutions[0].type | facility |
| authorships[10].institutions[0].lineage | https://openalex.org/I1305996414, https://openalex.org/I17937529 |
| authorships[10].institutions[0].country_code | DE |
| authorships[10].institutions[0].display_name | German Cancer Research Center |
| authorships[10].institutions[1].id | https://openalex.org/I223822909 |
| authorships[10].institutions[1].ror | https://ror.org/038t36y30 |
| authorships[10].institutions[1].type | education |
| authorships[10].institutions[1].lineage | https://openalex.org/I223822909 |
| authorships[10].institutions[1].country_code | DE |
| authorships[10].institutions[1].display_name | Heidelberg University |
| authorships[10].institutions[2].id | https://openalex.org/I4210111460 |
| authorships[10].institutions[2].ror | https://ror.org/01txwsw02 |
| authorships[10].institutions[2].type | healthcare |
| authorships[10].institutions[2].lineage | https://openalex.org/I4210111460 |
| authorships[10].institutions[2].country_code | DE |
| authorships[10].institutions[2].display_name | National Center for Tumor Diseases |
| authorships[10].institutions[3].id | https://openalex.org/I2802164966 |
| authorships[10].institutions[3].ror | https://ror.org/013czdx64 |
| authorships[10].institutions[3].type | healthcare |
| authorships[10].institutions[3].lineage | https://openalex.org/I2802164966 |
| authorships[10].institutions[3].country_code | DE |
| authorships[10].institutions[3].display_name | University Hospital Heidelberg |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Lena Maier-Hein |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | Division of Intelligent Medical Systems (IMSY), German Cancer Research Center (DKFZ), Heidelberg, Germany., Faculty of Mathematics and Computer Science, Heidelberg University, Heidelberg, Germany., Medical Faculty, Heidelberg University, Heidelberg, Germany., National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and University Hospital Heidelberg, Heidelberg, Germany. |
| authorships[11].author.id | https://openalex.org/A5014296305 |
| authorships[11].author.orcid | https://orcid.org/0000-0002-9179-9414 |
| authorships[11].author.display_name | Kris K. Dreher |
| authorships[11].countries | DE |
| authorships[11].affiliations[0].institution_ids | https://openalex.org/I223822909 |
| authorships[11].affiliations[0].raw_affiliation_string | Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany. |
| authorships[11].affiliations[1].institution_ids | https://openalex.org/I17937529, https://openalex.org/I223822909 |
| authorships[11].affiliations[1].raw_affiliation_string | Division of Intelligent Medical Systems (IMSY), German Cancer Research Center (DKFZ), Heidelberg, Germany. |
| authorships[11].institutions[0].id | https://openalex.org/I17937529 |
| authorships[11].institutions[0].ror | https://ror.org/04cdgtt98 |
| authorships[11].institutions[0].type | facility |
| authorships[11].institutions[0].lineage | https://openalex.org/I1305996414, https://openalex.org/I17937529 |
| authorships[11].institutions[0].country_code | DE |
| authorships[11].institutions[0].display_name | German Cancer Research Center |
| authorships[11].institutions[1].id | https://openalex.org/I223822909 |
| authorships[11].institutions[1].ror | https://ror.org/038t36y30 |
| authorships[11].institutions[1].type | education |
| authorships[11].institutions[1].lineage | https://openalex.org/I223822909 |
| authorships[11].institutions[1].country_code | DE |
| authorships[11].institutions[1].display_name | Heidelberg University |
| authorships[11].author_position | last |
| authorships[11].raw_author_name | Kris K Dreher |
| authorships[11].is_corresponding | False |
| authorships[11].raw_affiliation_strings | Division of Intelligent Medical Systems (IMSY), German Cancer Research Center (DKFZ), Heidelberg, Germany., Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany. |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/s11548-025-03370-9.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Shortcut learning leads to sex bias in deep learning models for photoacoustic tomography |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12015 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2204 |
| primary_topic.subfield.display_name | Biomedical Engineering |
| primary_topic.display_name | Photoacoustic and Ultrasonic Imaging |
| related_works | https://openalex.org/W4375867731, https://openalex.org/W4391621807, https://openalex.org/W2611989081, https://openalex.org/W4321487865, https://openalex.org/W4313906399, https://openalex.org/W4226493464, https://openalex.org/W3133861977, https://openalex.org/W2951211570, https://openalex.org/W3103566983, https://openalex.org/W4380075502 |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1007/s11548-025-03370-9 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S181408163 |
| best_oa_location.source.issn | 1861-6410, 1861-6429 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1861-6410 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Computer Assisted Radiology and Surgery |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s11548-025-03370-9.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Computer Assisted Radiology and Surgery |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s11548-025-03370-9 |
| primary_location.id | doi:10.1007/s11548-025-03370-9 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S181408163 |
| primary_location.source.issn | 1861-6410, 1861-6429 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1861-6410 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Computer Assisted Radiology and Surgery |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s11548-025-03370-9.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Computer Assisted Radiology and Surgery |
| primary_location.landing_page_url | https://doi.org/10.1007/s11548-025-03370-9 |
| publication_date | 2025-05-09 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4302307280, https://openalex.org/W4384663506, https://openalex.org/W4387211873, https://openalex.org/W4386362637, https://openalex.org/W4387097385, https://openalex.org/W2157048271, https://openalex.org/W2806047578, https://openalex.org/W3161135140, https://openalex.org/W2897110362, https://openalex.org/W2943148104, https://openalex.org/W3048997590, https://openalex.org/W2750096260, https://openalex.org/W3097635969, https://openalex.org/W3099647741, https://openalex.org/W4390031583, https://openalex.org/W2055728271, https://openalex.org/W3030030520, https://openalex.org/W2796295063, https://openalex.org/W4387770388, https://openalex.org/W3145444543, https://openalex.org/W2108598243, https://openalex.org/W4391756091, https://openalex.org/W4403052388, https://openalex.org/W4392122023, https://openalex.org/W2193493665, https://openalex.org/W4402858697, https://openalex.org/W3129087662, https://openalex.org/W4226434195 |
| referenced_works_count | 28 |
| abstract_inverted_index.a | 8, 44 |
| abstract_inverted_index.To | 49 |
| abstract_inverted_index.an | 144 |
| abstract_inverted_index.as | 7, 43 |
| abstract_inverted_index.by | 196, 224 |
| abstract_inverted_index.in | 13, 60, 177, 221, 248 |
| abstract_inverted_index.is | 243 |
| abstract_inverted_index.of | 10, 146, 193, 201 |
| abstract_inverted_index.on | 22, 153, 216 |
| abstract_inverted_index.to | 57, 165, 170, 229 |
| abstract_inverted_index.we | 74, 89, 190 |
| abstract_inverted_index.(1) | 91 |
| abstract_inverted_index.(2) | 101 |
| abstract_inverted_index.(3) | 116 |
| abstract_inverted_index.(up | 164 |
| abstract_inverted_index.147 | 129 |
| abstract_inverted_index.For | 148 |
| abstract_inverted_index.Our | 126 |
| abstract_inverted_index.PAD | 82, 107, 123, 149, 206 |
| abstract_inverted_index.PAT | 141, 217 |
| abstract_inverted_index.and | 65, 77, 110, 115, 122, 208, 231, 239, 256 |
| abstract_inverted_index.are | 253 |
| abstract_inverted_index.but | 19 |
| abstract_inverted_index.can | 94, 134 |
| abstract_inverted_index.due | 56 |
| abstract_inverted_index.for | 53, 245 |
| abstract_inverted_index.has | 4 |
| abstract_inverted_index.how | 67, 102, 117 |
| abstract_inverted_index.its | 20 |
| abstract_inverted_index.may | 219 |
| abstract_inverted_index.sex | 28, 54, 97, 121, 137, 209 |
| abstract_inverted_index.the | 51, 96, 136, 181, 198, 249 |
| abstract_inverted_index.0.21 | 166 |
| abstract_inverted_index.CNNs | 93, 119, 133 |
| abstract_inverted_index.This | 32 |
| abstract_inverted_index.been | 5 |
| abstract_inverted_index.bias | 55 |
| abstract_inverted_index.both | 254 |
| abstract_inverted_index.calf | 139 |
| abstract_inverted_index.data | 154, 183, 218 |
| abstract_inverted_index.from | 98, 138 |
| abstract_inverted_index.such | 68 |
| abstract_inverted_index.test | 78, 172 |
| abstract_inverted_index.that | 132, 252 |
| abstract_inverted_index.this | 35 |
| abstract_inverted_index.when | 168 |
| abstract_inverted_index.with | 80, 128, 155 |
| abstract_inverted_index.(AI), | 18 |
| abstract_inverted_index.(PAD) | 41 |
| abstract_inverted_index.0.75. | 147 |
| abstract_inverted_index.AUROC | 145 |
| abstract_inverted_index.Using | 86 |
| abstract_inverted_index.bias, | 29 |
| abstract_inverted_index.data, | 100 |
| abstract_inverted_index.drops | 163 |
| abstract_inverted_index.field | 251 |
| abstract_inverted_index.issue | 36 |
| abstract_inverted_index.might | 70 |
| abstract_inverted_index.reuse | 200 |
| abstract_inverted_index.sets. | 173 |
| abstract_inverted_index.study | 33, 127 |
| abstract_inverted_index.these | 87 |
| abstract_inverted_index.using | 37 |
| abstract_inverted_index.(CNNs) | 64 |
| abstract_inverted_index.(PAT), | 25 |
| abstract_inverted_index.AUROC) | 167 |
| abstract_inverted_index.across | 258 |
| abstract_inverted_index.affect | 71 |
| abstract_inverted_index.artery | 39 |
| abstract_inverted_index.assess | 66 |
| abstract_inverted_index.biased | 230 |
| abstract_inverted_index.biases | 69 |
| abstract_inverted_index.encode | 120 |
| abstract_inverted_index.engage | 220 |
| abstract_inverted_index.impact | 21, 106 |
| abstract_inverted_index.models | 151, 214, 247 |
| abstract_inverted_index.muscle | 140 |
| abstract_inverted_index.neural | 62 |
| abstract_inverted_index.sexes, | 114 |
| abstract_inverted_index.sexes. | 85, 188 |
| abstract_inverted_index.shifts | 105 |
| abstract_inverted_index.source | 9 |
| abstract_inverted_index.tasks. | 211 |
| abstract_inverted_index.within | 180 |
| abstract_inverted_index.Methods | 48 |
| abstract_inverted_index.Purpose | 1 |
| abstract_inverted_index.Results | 125 |
| abstract_inverted_index.applied | 169 |
| abstract_inverted_index.between | 84, 113, 187, 205 |
| abstract_inverted_index.created | 75 |
| abstract_inverted_index.disease | 40, 158 |
| abstract_inverted_index.diverse | 259 |
| abstract_inverted_index.examine | 50 |
| abstract_inverted_index.feature | 203 |
| abstract_inverted_index.greater | 175 |
| abstract_inverted_index.images, | 142 |
| abstract_inverted_index.imaging | 15, 99 |
| abstract_inverted_index.leading | 228 |
| abstract_inverted_index.learned | 202 |
| abstract_inverted_index.medical | 14, 250 |
| abstract_inverted_index.network | 63 |
| abstract_inverted_index.patient | 260 |
| abstract_inverted_index.remains | 30 |
| abstract_inverted_index.trained | 152, 215 |
| abstract_inverted_index.varying | 81 |
| abstract_inverted_index.whether | 92 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Finally, | 189 |
| abstract_inverted_index.Shortcut | 2 |
| abstract_inverted_index.accurate | 255 |
| abstract_inverted_index.balanced | 171 |
| abstract_inverted_index.classify | 95, 135 |
| abstract_inverted_index.clinical | 46 |
| abstract_inverted_index.critical | 244 |
| abstract_inverted_index.datasets | 79 |
| abstract_inverted_index.evidence | 192 |
| abstract_inverted_index.explored | 90 |
| abstract_inverted_index.identify | 191 |
| abstract_inverted_index.learning | 3, 59, 195, 223, 242 |
| abstract_inverted_index.shortcut | 58, 194, 222, 241 |
| abstract_inverted_index.specific | 45 |
| abstract_inverted_index.training | 76, 182 |
| abstract_inverted_index.CNN-based | 213 |
| abstract_inverted_index.achieving | 143 |
| abstract_inverted_index.datasets, | 88 |
| abstract_inverted_index.diagnosis | 42, 108, 207 |
| abstract_inverted_index.disparity | 112 |
| abstract_inverted_index.effective | 199 |
| abstract_inverted_index.equitable | 257 |
| abstract_inverted_index.features, | 227 |
| abstract_inverted_index.features. | 124 |
| abstract_inverted_index.potential | 52 |
| abstract_inverted_index.similarly | 118 |
| abstract_inverted_index.Addressing | 235 |
| abstract_inverted_index.Conclusion | 212 |
| abstract_inverted_index.artificial | 16 |
| abstract_inverted_index.concerning | 27 |
| abstract_inverted_index.developing | 246 |
| abstract_inverted_index.diagnosis, | 150 |
| abstract_inverted_index.diagnostic | 72, 233 |
| abstract_inverted_index.identified | 6 |
| abstract_inverted_index.imbalanced | 156 |
| abstract_inverted_index.imbalances | 176, 238 |
| abstract_inverted_index.leveraging | 225 |
| abstract_inverted_index.peripheral | 38 |
| abstract_inverted_index.prevalence | 83, 104, 159, 179, 237 |
| abstract_inverted_index.preventing | 240 |
| abstract_inverted_index.tomography | 24 |
| abstract_inverted_index.unfairness | 12 |
| abstract_inverted_index.unreliable | 232 |
| abstract_inverted_index.algorithmic | 11 |
| abstract_inverted_index.disparities | 186 |
| abstract_inverted_index.exacerbated | 184 |
| abstract_inverted_index.experienced | 160 |
| abstract_inverted_index.individuals | 130 |
| abstract_inverted_index.performance | 109, 162 |
| abstract_inverted_index.sex-related | 226 |
| abstract_inverted_index.significant | 161 |
| abstract_inverted_index.application. | 47 |
| abstract_inverted_index.demonstrates | 131 |
| abstract_inverted_index.intelligence | 17 |
| abstract_inverted_index.investigates | 34 |
| abstract_inverted_index.particularly | 26 |
| abstract_inverted_index.populations. | 261 |
| abstract_inverted_index.predictions, | 73 |
| abstract_inverted_index.predictions. | 234 |
| abstract_inverted_index.sex-specific | 103, 157, 178 |
| abstract_inverted_index.Additionally, | 174 |
| abstract_inverted_index.convolutional | 61 |
| abstract_inverted_index.demonstrating | 197 |
| abstract_inverted_index.photoacoustic | 23 |
| abstract_inverted_index.classification | 210 |
| abstract_inverted_index.underdiagnosis | 111, 185 |
| abstract_inverted_index.underexplored. | 31 |
| abstract_inverted_index.representations | 204 |
| abstract_inverted_index.demographic-specific | 236 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 12 |
| citation_normalized_percentile.value | 0.17256026 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |