Shortcut Learning Susceptibility in Vision Classifiers Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2502.09150
Shortcut learning, where machine learning models exploit spurious correlations in data instead of capturing meaningful features, poses a significant challenge to building robust and generalizable models. This phenomenon is prevalent across various machine learning applications, including vision, natural language processing, and speech recognition, where models may find unintended cues that minimize training loss but fail to capture the underlying structure of the data. Vision classifiers based on Convolutional Neural Networks (CNNs), Multi-Layer Perceptrons (MLPs), and Vision Transformers (ViTs) leverage distinct architectural principles to process spatial and structural information, making them differently susceptible to shortcut learning. In this study, we systematically evaluate these architectures by introducing deliberate shortcuts into the dataset that are correlated with class labels both positionally and via intensity, creating a controlled setup to assess whether models rely on these artificial cues or learn actual distinguishing features. We perform both quantitative evaluation by training on the shortcut-modified dataset and testing on two different test sets-one containing the same shortcuts and another without them-to determine the extent of reliance on shortcuts. Additionally, qualitative evaluation is performed using network inversion-based reconstruction techniques to analyze what the models internalize in their weights, aiming to reconstruct the training data as perceived by the classifiers. Further, we evaluate susceptibility to shortcut learning across different learning rates. Our analysis reveals that CNNs at lower learning rates tend to be more reserved against entirely picking up shortcut features, while ViTs, particularly those without positional encodings, almost entirely ignore the distinctive image features in the presence of shortcuts.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2502.09150
- https://arxiv.org/pdf/2502.09150
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407571876
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407571876Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2502.09150Digital Object Identifier
- Title
-
Shortcut Learning Susceptibility in Vision ClassifiersWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-13Full publication date if available
- Authors
-
Pirzada Suhail, Amit SethiList of authors in order
- Landing page
-
https://arxiv.org/abs/2502.09150Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2502.09150Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2502.09150Direct OA link when available
- Concepts
-
Artificial intelligence, Computer science, Machine learning, Computer visionTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407571876 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2502.09150 |
| ids.doi | https://doi.org/10.48550/arxiv.2502.09150 |
| ids.openalex | https://openalex.org/W4407571876 |
| fwci | |
| type | preprint |
| title | Shortcut Learning Susceptibility in Vision Classifiers |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10320 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9174000024795532 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Neural Networks and Applications |
| topics[1].id | https://openalex.org/T11307 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9139999747276306 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Domain Adaptation and Few-Shot Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.565041184425354 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5151240229606628 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C119857082 |
| concepts[2].level | 1 |
| concepts[2].score | 0.383553147315979 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[2].display_name | Machine learning |
| concepts[3].id | https://openalex.org/C31972630 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3348729610443115 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[3].display_name | Computer vision |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.565041184425354 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5151240229606628 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/machine-learning |
| keywords[2].score | 0.383553147315979 |
| keywords[2].display_name | Machine learning |
| keywords[3].id | https://openalex.org/keywords/computer-vision |
| keywords[3].score | 0.3348729610443115 |
| keywords[3].display_name | Computer vision |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2502.09150 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2502.09150 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2502.09150 |
| locations[1].id | doi:10.48550/arxiv.2502.09150 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2502.09150 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5093967906 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Pirzada Suhail |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Suhail, Pirzada |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5087629613 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8634-1804 |
| authorships[1].author.display_name | Amit Sethi |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Sethi, Amit |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2502.09150 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Shortcut Learning Susceptibility in Vision Classifiers |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10320 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9174000024795532 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Neural Networks and Applications |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W2772917594, https://openalex.org/W2036807459, https://openalex.org/W2058170566, https://openalex.org/W2755342338, https://openalex.org/W2166024367, https://openalex.org/W3116076068, https://openalex.org/W2229312674, https://openalex.org/W2951359407 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2502.09150 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2502.09150 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2502.09150 |
| primary_location.id | pmh:oai:arXiv.org:2502.09150 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2502.09150 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2502.09150 |
| publication_date | 2025-02-13 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 17, 122 |
| abstract_inverted_index.In | 95 |
| abstract_inverted_index.We | 139 |
| abstract_inverted_index.as | 197 |
| abstract_inverted_index.at | 218 |
| abstract_inverted_index.be | 224 |
| abstract_inverted_index.by | 103, 144, 199 |
| abstract_inverted_index.in | 9, 188, 247 |
| abstract_inverted_index.is | 28, 175 |
| abstract_inverted_index.of | 12, 60, 168, 250 |
| abstract_inverted_index.on | 66, 130, 146, 152, 170 |
| abstract_inverted_index.or | 134 |
| abstract_inverted_index.to | 20, 55, 82, 92, 125, 182, 192, 206, 223 |
| abstract_inverted_index.up | 230 |
| abstract_inverted_index.we | 98, 203 |
| abstract_inverted_index.Our | 213 |
| abstract_inverted_index.and | 23, 40, 74, 85, 118, 150, 161 |
| abstract_inverted_index.are | 111 |
| abstract_inverted_index.but | 53 |
| abstract_inverted_index.may | 45 |
| abstract_inverted_index.the | 57, 61, 108, 147, 158, 166, 185, 194, 200, 243, 248 |
| abstract_inverted_index.two | 153 |
| abstract_inverted_index.via | 119 |
| abstract_inverted_index.CNNs | 217 |
| abstract_inverted_index.This | 26 |
| abstract_inverted_index.both | 116, 141 |
| abstract_inverted_index.cues | 48, 133 |
| abstract_inverted_index.data | 10, 196 |
| abstract_inverted_index.fail | 54 |
| abstract_inverted_index.find | 46 |
| abstract_inverted_index.into | 107 |
| abstract_inverted_index.loss | 52 |
| abstract_inverted_index.more | 225 |
| abstract_inverted_index.rely | 129 |
| abstract_inverted_index.same | 159 |
| abstract_inverted_index.tend | 222 |
| abstract_inverted_index.test | 155 |
| abstract_inverted_index.that | 49, 110, 216 |
| abstract_inverted_index.them | 89 |
| abstract_inverted_index.this | 96 |
| abstract_inverted_index.what | 184 |
| abstract_inverted_index.with | 113 |
| abstract_inverted_index.ViTs, | 234 |
| abstract_inverted_index.based | 65 |
| abstract_inverted_index.class | 114 |
| abstract_inverted_index.data. | 62 |
| abstract_inverted_index.image | 245 |
| abstract_inverted_index.learn | 135 |
| abstract_inverted_index.lower | 219 |
| abstract_inverted_index.poses | 16 |
| abstract_inverted_index.rates | 221 |
| abstract_inverted_index.setup | 124 |
| abstract_inverted_index.their | 189 |
| abstract_inverted_index.these | 101, 131 |
| abstract_inverted_index.those | 236 |
| abstract_inverted_index.using | 177 |
| abstract_inverted_index.where | 2, 43 |
| abstract_inverted_index.while | 233 |
| abstract_inverted_index.(ViTs) | 77 |
| abstract_inverted_index.Neural | 68 |
| abstract_inverted_index.Vision | 63, 75 |
| abstract_inverted_index.across | 30, 209 |
| abstract_inverted_index.actual | 136 |
| abstract_inverted_index.aiming | 191 |
| abstract_inverted_index.almost | 240 |
| abstract_inverted_index.assess | 126 |
| abstract_inverted_index.extent | 167 |
| abstract_inverted_index.ignore | 242 |
| abstract_inverted_index.labels | 115 |
| abstract_inverted_index.making | 88 |
| abstract_inverted_index.models | 5, 44, 128, 186 |
| abstract_inverted_index.rates. | 212 |
| abstract_inverted_index.robust | 22 |
| abstract_inverted_index.speech | 41 |
| abstract_inverted_index.study, | 97 |
| abstract_inverted_index.(CNNs), | 70 |
| abstract_inverted_index.(MLPs), | 73 |
| abstract_inverted_index.against | 227 |
| abstract_inverted_index.analyze | 183 |
| abstract_inverted_index.another | 162 |
| abstract_inverted_index.capture | 56 |
| abstract_inverted_index.dataset | 109, 149 |
| abstract_inverted_index.exploit | 6 |
| abstract_inverted_index.instead | 11 |
| abstract_inverted_index.machine | 3, 32 |
| abstract_inverted_index.models. | 25 |
| abstract_inverted_index.natural | 37 |
| abstract_inverted_index.network | 178 |
| abstract_inverted_index.perform | 140 |
| abstract_inverted_index.picking | 229 |
| abstract_inverted_index.process | 83 |
| abstract_inverted_index.reveals | 215 |
| abstract_inverted_index.spatial | 84 |
| abstract_inverted_index.testing | 151 |
| abstract_inverted_index.them-to | 164 |
| abstract_inverted_index.various | 31 |
| abstract_inverted_index.vision, | 36 |
| abstract_inverted_index.whether | 127 |
| abstract_inverted_index.without | 163, 237 |
| abstract_inverted_index.Further, | 202 |
| abstract_inverted_index.Networks | 69 |
| abstract_inverted_index.Shortcut | 0 |
| abstract_inverted_index.analysis | 214 |
| abstract_inverted_index.building | 21 |
| abstract_inverted_index.creating | 121 |
| abstract_inverted_index.distinct | 79 |
| abstract_inverted_index.entirely | 228, 241 |
| abstract_inverted_index.evaluate | 100, 204 |
| abstract_inverted_index.features | 246 |
| abstract_inverted_index.language | 38 |
| abstract_inverted_index.learning | 4, 33, 208, 211, 220 |
| abstract_inverted_index.leverage | 78 |
| abstract_inverted_index.minimize | 50 |
| abstract_inverted_index.presence | 249 |
| abstract_inverted_index.reliance | 169 |
| abstract_inverted_index.reserved | 226 |
| abstract_inverted_index.sets-one | 156 |
| abstract_inverted_index.shortcut | 93, 207, 231 |
| abstract_inverted_index.spurious | 7 |
| abstract_inverted_index.training | 51, 145, 195 |
| abstract_inverted_index.weights, | 190 |
| abstract_inverted_index.capturing | 13 |
| abstract_inverted_index.challenge | 19 |
| abstract_inverted_index.determine | 165 |
| abstract_inverted_index.different | 154, 210 |
| abstract_inverted_index.features, | 15, 232 |
| abstract_inverted_index.features. | 138 |
| abstract_inverted_index.including | 35 |
| abstract_inverted_index.learning, | 1 |
| abstract_inverted_index.learning. | 94 |
| abstract_inverted_index.perceived | 198 |
| abstract_inverted_index.performed | 176 |
| abstract_inverted_index.prevalent | 29 |
| abstract_inverted_index.shortcuts | 106, 160 |
| abstract_inverted_index.structure | 59 |
| abstract_inverted_index.artificial | 132 |
| abstract_inverted_index.containing | 157 |
| abstract_inverted_index.controlled | 123 |
| abstract_inverted_index.correlated | 112 |
| abstract_inverted_index.deliberate | 105 |
| abstract_inverted_index.encodings, | 239 |
| abstract_inverted_index.evaluation | 143, 174 |
| abstract_inverted_index.intensity, | 120 |
| abstract_inverted_index.meaningful | 14 |
| abstract_inverted_index.phenomenon | 27 |
| abstract_inverted_index.positional | 238 |
| abstract_inverted_index.principles | 81 |
| abstract_inverted_index.shortcuts. | 171, 251 |
| abstract_inverted_index.structural | 86 |
| abstract_inverted_index.techniques | 181 |
| abstract_inverted_index.underlying | 58 |
| abstract_inverted_index.unintended | 47 |
| abstract_inverted_index.Multi-Layer | 71 |
| abstract_inverted_index.Perceptrons | 72 |
| abstract_inverted_index.classifiers | 64 |
| abstract_inverted_index.differently | 90 |
| abstract_inverted_index.distinctive | 244 |
| abstract_inverted_index.internalize | 187 |
| abstract_inverted_index.introducing | 104 |
| abstract_inverted_index.processing, | 39 |
| abstract_inverted_index.qualitative | 173 |
| abstract_inverted_index.reconstruct | 193 |
| abstract_inverted_index.significant | 18 |
| abstract_inverted_index.susceptible | 91 |
| abstract_inverted_index.Transformers | 76 |
| abstract_inverted_index.classifiers. | 201 |
| abstract_inverted_index.correlations | 8 |
| abstract_inverted_index.information, | 87 |
| abstract_inverted_index.particularly | 235 |
| abstract_inverted_index.positionally | 117 |
| abstract_inverted_index.quantitative | 142 |
| abstract_inverted_index.recognition, | 42 |
| abstract_inverted_index.Additionally, | 172 |
| abstract_inverted_index.Convolutional | 67 |
| abstract_inverted_index.applications, | 34 |
| abstract_inverted_index.architectural | 80 |
| abstract_inverted_index.architectures | 102 |
| abstract_inverted_index.generalizable | 24 |
| abstract_inverted_index.distinguishing | 137 |
| abstract_inverted_index.reconstruction | 180 |
| abstract_inverted_index.susceptibility | 205 |
| abstract_inverted_index.systematically | 99 |
| abstract_inverted_index.inversion-based | 179 |
| abstract_inverted_index.shortcut-modified | 148 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |