ShortcutProbe: Probing Prediction Shortcuts for Learning Robust Models Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2505.13910
Deep learning models often achieve high performance by inadvertently learning spurious correlations between targets and non-essential features. For example, an image classifier may identify an object via its background that spuriously correlates with it. This prediction behavior, known as spurious bias, severely degrades model performance on data that lacks the learned spurious correlations. Existing methods on spurious bias mitigation typically require a variety of data groups with spurious correlation annotations called group labels. However, group labels require costly human annotations and often fail to capture subtle spurious biases such as relying on specific pixels for predictions. In this paper, we propose a novel post hoc spurious bias mitigation framework without requiring group labels. Our framework, termed ShortcutProbe, identifies prediction shortcuts that reflect potential non-robustness in predictions in a given model's latent space. The model is then retrained to be invariant to the identified prediction shortcuts for improved robustness. We theoretically analyze the effectiveness of the framework and empirically demonstrate that it is an efficient and practical tool for improving a model's robustness to spurious bias on diverse datasets.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2505.13910
- https://arxiv.org/pdf/2505.13910
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415332727
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415332727Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2505.13910Digital Object Identifier
- Title
-
ShortcutProbe: Probing Prediction Shortcuts for Learning Robust ModelsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-20Full publication date if available
- Authors
-
Guangtao Zheng, Wenqian Ye, Aidong ZhangList of authors in order
- Landing page
-
https://arxiv.org/abs/2505.13910Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2505.13910Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2505.13910Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415332727 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2505.13910 |
| ids.doi | https://doi.org/10.48550/arxiv.2505.13910 |
| ids.openalex | https://openalex.org/W4415332727 |
| fwci | 0.0 |
| type | preprint |
| title | ShortcutProbe: Probing Prediction Shortcuts for Learning Robust Models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12535 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9732000231742859 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Machine Learning and Data Classification |
| topics[1].id | https://openalex.org/T12072 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9430999755859375 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning and Algorithms |
| topics[2].id | https://openalex.org/T11512 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9185000061988831 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Anomaly Detection Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2505.13910 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2505.13910 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2505.13910 |
| locations[1].id | doi:10.48550/arxiv.2505.13910 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2505.13910 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5028570408 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1287-4931 |
| authorships[0].author.display_name | Guangtao Zheng |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zheng, Guangtao |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5067298507 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6069-5153 |
| authorships[1].author.display_name | Wenqian Ye |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ye, Wenqian |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5013588572 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9723-3246 |
| authorships[2].author.display_name | Aidong Zhang |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Zhang, Aidong |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2505.13910 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-19T00:00:00 |
| display_name | ShortcutProbe: Probing Prediction Shortcuts for Learning Robust Models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12535 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9732000231742859 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Machine Learning and Data Classification |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2505.13910 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2505.13910 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2505.13910 |
| primary_location.id | pmh:oai:arXiv.org:2505.13910 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2505.13910 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2505.13910 |
| publication_date | 2025-05-20 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 61, 101, 127, 169 |
| abstract_inverted_index.In | 96 |
| abstract_inverted_index.We | 148 |
| abstract_inverted_index.an | 19, 24, 162 |
| abstract_inverted_index.as | 38, 89 |
| abstract_inverted_index.be | 138 |
| abstract_inverted_index.by | 7 |
| abstract_inverted_index.in | 124, 126 |
| abstract_inverted_index.is | 134, 161 |
| abstract_inverted_index.it | 160 |
| abstract_inverted_index.of | 63, 153 |
| abstract_inverted_index.on | 45, 55, 91, 175 |
| abstract_inverted_index.to | 83, 137, 140, 172 |
| abstract_inverted_index.we | 99 |
| abstract_inverted_index.For | 17 |
| abstract_inverted_index.Our | 113 |
| abstract_inverted_index.The | 132 |
| abstract_inverted_index.and | 14, 80, 156, 164 |
| abstract_inverted_index.for | 94, 145, 167 |
| abstract_inverted_index.hoc | 104 |
| abstract_inverted_index.it. | 33 |
| abstract_inverted_index.its | 27 |
| abstract_inverted_index.may | 22 |
| abstract_inverted_index.the | 49, 141, 151, 154 |
| abstract_inverted_index.via | 26 |
| abstract_inverted_index.Deep | 0 |
| abstract_inverted_index.This | 34 |
| abstract_inverted_index.bias | 57, 106, 174 |
| abstract_inverted_index.data | 46, 64 |
| abstract_inverted_index.fail | 82 |
| abstract_inverted_index.high | 5 |
| abstract_inverted_index.post | 103 |
| abstract_inverted_index.such | 88 |
| abstract_inverted_index.that | 29, 47, 120, 159 |
| abstract_inverted_index.then | 135 |
| abstract_inverted_index.this | 97 |
| abstract_inverted_index.tool | 166 |
| abstract_inverted_index.with | 32, 66 |
| abstract_inverted_index.bias, | 40 |
| abstract_inverted_index.given | 128 |
| abstract_inverted_index.group | 71, 74, 111 |
| abstract_inverted_index.human | 78 |
| abstract_inverted_index.image | 20 |
| abstract_inverted_index.known | 37 |
| abstract_inverted_index.lacks | 48 |
| abstract_inverted_index.model | 43, 133 |
| abstract_inverted_index.novel | 102 |
| abstract_inverted_index.often | 3, 81 |
| abstract_inverted_index.biases | 87 |
| abstract_inverted_index.called | 70 |
| abstract_inverted_index.costly | 77 |
| abstract_inverted_index.groups | 65 |
| abstract_inverted_index.labels | 75 |
| abstract_inverted_index.latent | 130 |
| abstract_inverted_index.models | 2 |
| abstract_inverted_index.object | 25 |
| abstract_inverted_index.paper, | 98 |
| abstract_inverted_index.pixels | 93 |
| abstract_inverted_index.space. | 131 |
| abstract_inverted_index.subtle | 85 |
| abstract_inverted_index.termed | 115 |
| abstract_inverted_index.achieve | 4 |
| abstract_inverted_index.analyze | 150 |
| abstract_inverted_index.between | 12 |
| abstract_inverted_index.capture | 84 |
| abstract_inverted_index.diverse | 176 |
| abstract_inverted_index.labels. | 72, 112 |
| abstract_inverted_index.learned | 50 |
| abstract_inverted_index.methods | 54 |
| abstract_inverted_index.model's | 129, 170 |
| abstract_inverted_index.propose | 100 |
| abstract_inverted_index.reflect | 121 |
| abstract_inverted_index.relying | 90 |
| abstract_inverted_index.require | 60, 76 |
| abstract_inverted_index.targets | 13 |
| abstract_inverted_index.variety | 62 |
| abstract_inverted_index.without | 109 |
| abstract_inverted_index.Existing | 53 |
| abstract_inverted_index.However, | 73 |
| abstract_inverted_index.degrades | 42 |
| abstract_inverted_index.example, | 18 |
| abstract_inverted_index.identify | 23 |
| abstract_inverted_index.improved | 146 |
| abstract_inverted_index.learning | 1, 9 |
| abstract_inverted_index.severely | 41 |
| abstract_inverted_index.specific | 92 |
| abstract_inverted_index.spurious | 10, 39, 51, 56, 67, 86, 105, 173 |
| abstract_inverted_index.behavior, | 36 |
| abstract_inverted_index.datasets. | 177 |
| abstract_inverted_index.efficient | 163 |
| abstract_inverted_index.features. | 16 |
| abstract_inverted_index.framework | 108, 155 |
| abstract_inverted_index.improving | 168 |
| abstract_inverted_index.invariant | 139 |
| abstract_inverted_index.potential | 122 |
| abstract_inverted_index.practical | 165 |
| abstract_inverted_index.requiring | 110 |
| abstract_inverted_index.retrained | 136 |
| abstract_inverted_index.shortcuts | 119, 144 |
| abstract_inverted_index.typically | 59 |
| abstract_inverted_index.background | 28 |
| abstract_inverted_index.classifier | 21 |
| abstract_inverted_index.correlates | 31 |
| abstract_inverted_index.framework, | 114 |
| abstract_inverted_index.identified | 142 |
| abstract_inverted_index.identifies | 117 |
| abstract_inverted_index.mitigation | 58, 107 |
| abstract_inverted_index.prediction | 35, 118, 143 |
| abstract_inverted_index.robustness | 171 |
| abstract_inverted_index.spuriously | 30 |
| abstract_inverted_index.annotations | 69, 79 |
| abstract_inverted_index.correlation | 68 |
| abstract_inverted_index.demonstrate | 158 |
| abstract_inverted_index.empirically | 157 |
| abstract_inverted_index.performance | 6, 44 |
| abstract_inverted_index.predictions | 125 |
| abstract_inverted_index.robustness. | 147 |
| abstract_inverted_index.correlations | 11 |
| abstract_inverted_index.predictions. | 95 |
| abstract_inverted_index.correlations. | 52 |
| abstract_inverted_index.effectiveness | 152 |
| abstract_inverted_index.inadvertently | 8 |
| abstract_inverted_index.non-essential | 15 |
| abstract_inverted_index.theoretically | 149 |
| abstract_inverted_index.ShortcutProbe, | 116 |
| abstract_inverted_index.non-robustness | 123 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |