Should We Be Afraid of Artificial Intelligence? Consumer Willingness to Share Personal Information with Fashion Sales Robots Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.31274/itaa.12349
Recent research on the use of robots in retail settings presents a wide-spread concern among consumers regarding privacy risks and malfunctions in service experiences. This research speculates that such apprehensions likely prevent consumers from sharing information with AI robots, which negatively affects fashion retailers’ abilities to gauge their consumers’ desires. Consumers’ willingness to share (WTS) information helps fashion businesses make strategic marketing decisions. This study identifies seven factors that may lead to high and low WTS information with AI robots through a literature review and implementing interviews. We then build a decision tree predictive model to identify important motivational factors of WTS with AI fashion robots. Our findings indicate that the service quality, enjoyment, usefulness, and trust predict the WTS information with AI robots. Thus, ensuring that consumers understand the benefits AI robot use, including easier and more enjoyable shopping experiences, will increase their interactions with robots.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.31274/itaa.12349
- https://www.iastatedigitalpress.com/itaa/article/12349/galley/11605/download/
- OA Status
- gold
- References
- 6
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3134473844
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3134473844Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.31274/itaa.12349Digital Object Identifier
- Title
-
Should We Be Afraid of Artificial Intelligence? Consumer Willingness to Share Personal Information with Fashion Sales RobotsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-12-28Full publication date if available
- Authors
-
Christina Soyoung Song, Youn‐Kyung KimList of authors in order
- Landing page
-
https://doi.org/10.31274/itaa.12349Publisher landing page
- PDF URL
-
https://www.iastatedigitalpress.com/itaa/article/12349/galley/11605/download/Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.iastatedigitalpress.com/itaa/article/12349/galley/11605/download/Direct OA link when available
- Concepts
-
Robot, Service (business), Information sharing, Business, Quality (philosophy), Marketing, Computer science, Advertising, Internet privacy, Artificial intelligence, World Wide Web, Epistemology, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
6Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3134473844 |
|---|---|
| doi | https://doi.org/10.31274/itaa.12349 |
| ids.doi | https://doi.org/10.31274/itaa.12349 |
| ids.mag | 3134473844 |
| ids.openalex | https://openalex.org/W3134473844 |
| fwci | 0.0 |
| type | article |
| title | Should We Be Afraid of Artificial Intelligence? Consumer Willingness to Share Personal Information with Fashion Sales Robots |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T14260 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.9839000105857849 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1803 |
| topics[0].subfield.display_name | Management Science and Operations Research |
| topics[0].display_name | Impact of AI and Big Data on Business and Society |
| topics[1].id | https://openalex.org/T10883 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.9470999836921692 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3311 |
| topics[1].subfield.display_name | Safety Research |
| topics[1].display_name | Ethics and Social Impacts of AI |
| topics[2].id | https://openalex.org/T12128 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9398999810218811 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | AI in Service Interactions |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C90509273 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7424286007881165 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11012 |
| concepts[0].display_name | Robot |
| concepts[1].id | https://openalex.org/C2780378061 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5582895874977112 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q25351891 |
| concepts[1].display_name | Service (business) |
| concepts[2].id | https://openalex.org/C2776854237 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5330349802970886 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q6031064 |
| concepts[2].display_name | Information sharing |
| concepts[3].id | https://openalex.org/C144133560 |
| concepts[3].level | 0 |
| concepts[3].score | 0.517848551273346 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[3].display_name | Business |
| concepts[4].id | https://openalex.org/C2779530757 |
| concepts[4].level | 2 |
| concepts[4].score | 0.47372570633888245 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1207505 |
| concepts[4].display_name | Quality (philosophy) |
| concepts[5].id | https://openalex.org/C162853370 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4565550684928894 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q39809 |
| concepts[5].display_name | Marketing |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.42950087785720825 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C112698675 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3874465525150299 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q37038 |
| concepts[7].display_name | Advertising |
| concepts[8].id | https://openalex.org/C108827166 |
| concepts[8].level | 1 |
| concepts[8].score | 0.34107309579849243 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q175975 |
| concepts[8].display_name | Internet privacy |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.24686068296432495 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C136764020 |
| concepts[10].level | 1 |
| concepts[10].score | 0.14668402075767517 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[10].display_name | World Wide Web |
| concepts[11].id | https://openalex.org/C111472728 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[11].display_name | Epistemology |
| concepts[12].id | https://openalex.org/C138885662 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[12].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/robot |
| keywords[0].score | 0.7424286007881165 |
| keywords[0].display_name | Robot |
| keywords[1].id | https://openalex.org/keywords/service |
| keywords[1].score | 0.5582895874977112 |
| keywords[1].display_name | Service (business) |
| keywords[2].id | https://openalex.org/keywords/information-sharing |
| keywords[2].score | 0.5330349802970886 |
| keywords[2].display_name | Information sharing |
| keywords[3].id | https://openalex.org/keywords/business |
| keywords[3].score | 0.517848551273346 |
| keywords[3].display_name | Business |
| keywords[4].id | https://openalex.org/keywords/quality |
| keywords[4].score | 0.47372570633888245 |
| keywords[4].display_name | Quality (philosophy) |
| keywords[5].id | https://openalex.org/keywords/marketing |
| keywords[5].score | 0.4565550684928894 |
| keywords[5].display_name | Marketing |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.42950087785720825 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/advertising |
| keywords[7].score | 0.3874465525150299 |
| keywords[7].display_name | Advertising |
| keywords[8].id | https://openalex.org/keywords/internet-privacy |
| keywords[8].score | 0.34107309579849243 |
| keywords[8].display_name | Internet privacy |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.24686068296432495 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/world-wide-web |
| keywords[10].score | 0.14668402075767517 |
| keywords[10].display_name | World Wide Web |
| language | en |
| locations[0].id | doi:10.31274/itaa.12349 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.iastatedigitalpress.com/itaa/article/12349/galley/11605/download/ |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Pivoting for the Pandemic |
| locations[0].landing_page_url | https://doi.org/10.31274/itaa.12349 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5046237578 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2031-5694 |
| authorships[0].author.display_name | Christina Soyoung Song |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I47301684 |
| authorships[0].affiliations[0].raw_affiliation_string | Illinois State University |
| authorships[0].institutions[0].id | https://openalex.org/I47301684 |
| authorships[0].institutions[0].ror | https://ror.org/050kcr883 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I47301684 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Illinois State University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Christina Soyoung Song |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Illinois State University |
| authorships[1].author.id | https://openalex.org/A5081325281 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5507-5152 |
| authorships[1].author.display_name | Youn‐Kyung Kim |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I75027704 |
| authorships[1].affiliations[0].raw_affiliation_string | University of Tennessee |
| authorships[1].institutions[0].id | https://openalex.org/I75027704 |
| authorships[1].institutions[0].ror | https://ror.org/020f3ap87 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I75027704 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Tennessee at Knoxville |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Youn-Kyung Kim |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of Tennessee |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.iastatedigitalpress.com/itaa/article/12349/galley/11605/download/ |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Should We Be Afraid of Artificial Intelligence? Consumer Willingness to Share Personal Information with Fashion Sales Robots |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T14260 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.9839000105857849 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1803 |
| primary_topic.subfield.display_name | Management Science and Operations Research |
| primary_topic.display_name | Impact of AI and Big Data on Business and Society |
| related_works | https://openalex.org/W2908364646, https://openalex.org/W2275271759, https://openalex.org/W2014532210, https://openalex.org/W8302103, https://openalex.org/W1992760298, https://openalex.org/W2767629806, https://openalex.org/W2319899002, https://openalex.org/W2953463546, https://openalex.org/W3171631314, https://openalex.org/W2187359640 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.31274/itaa.12349 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.iastatedigitalpress.com/itaa/article/12349/galley/11605/download/ |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Pivoting for the Pandemic |
| best_oa_location.landing_page_url | https://doi.org/10.31274/itaa.12349 |
| primary_location.id | doi:10.31274/itaa.12349 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.iastatedigitalpress.com/itaa/article/12349/galley/11605/download/ |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Pivoting for the Pandemic |
| primary_location.landing_page_url | https://doi.org/10.31274/itaa.12349 |
| publication_date | 2020-12-28 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2166786824, https://openalex.org/W2021451445, https://openalex.org/W2912861911, https://openalex.org/W2606695189, https://openalex.org/W4246393471, https://openalex.org/W2934939463 |
| referenced_works_count | 6 |
| abstract_inverted_index.a | 11, 81, 90 |
| abstract_inverted_index.AI | 37, 78, 103, 122, 131 |
| abstract_inverted_index.We | 87 |
| abstract_inverted_index.in | 7, 21 |
| abstract_inverted_index.of | 5, 100 |
| abstract_inverted_index.on | 2 |
| abstract_inverted_index.to | 45, 52, 71, 95 |
| abstract_inverted_index.Our | 106 |
| abstract_inverted_index.WTS | 75, 101, 119 |
| abstract_inverted_index.and | 19, 73, 84, 115, 136 |
| abstract_inverted_index.low | 74 |
| abstract_inverted_index.may | 69 |
| abstract_inverted_index.the | 3, 110, 118, 129 |
| abstract_inverted_index.use | 4 |
| abstract_inverted_index.<br> | 147 |
| abstract_inverted_index.This | 24, 63 |
| abstract_inverted_index.from | 33 |
| abstract_inverted_index.high | 72 |
| abstract_inverted_index.lead | 70 |
| abstract_inverted_index.make | 59 |
| abstract_inverted_index.more | 137 |
| abstract_inverted_index.such | 28 |
| abstract_inverted_index.that | 27, 68, 109, 126 |
| abstract_inverted_index.then | 88 |
| abstract_inverted_index.tree | 92 |
| abstract_inverted_index.use, | 133 |
| abstract_inverted_index.will | 141 |
| abstract_inverted_index.with | 36, 77, 102, 121, 145 |
| abstract_inverted_index.(WTS) | 54 |
| abstract_inverted_index.Thus, | 124 |
| abstract_inverted_index.among | 14 |
| abstract_inverted_index.build | 89 |
| abstract_inverted_index.gauge | 46 |
| abstract_inverted_index.helps | 56 |
| abstract_inverted_index.model | 94 |
| abstract_inverted_index.risks | 18 |
| abstract_inverted_index.robot | 132 |
| abstract_inverted_index.seven | 66 |
| abstract_inverted_index.share | 53 |
| abstract_inverted_index.study | 64 |
| abstract_inverted_index.their | 47, 143 |
| abstract_inverted_index.trust | 116 |
| abstract_inverted_index.which | 39 |
| abstract_inverted_index.Recent | 0 |
| abstract_inverted_index.easier | 135 |
| abstract_inverted_index.likely | 30 |
| abstract_inverted_index.retail | 8 |
| abstract_inverted_index.review | 83 |
| abstract_inverted_index.robots | 6, 79 |
| abstract_inverted_index.affects | 41 |
| abstract_inverted_index.concern | 13 |
| abstract_inverted_index.factors | 67, 99 |
| abstract_inverted_index.fashion | 42, 57, 104 |
| abstract_inverted_index.predict | 117 |
| abstract_inverted_index.prevent | 31 |
| abstract_inverted_index.privacy | 17 |
| abstract_inverted_index.robots, | 38 |
| abstract_inverted_index.robots. | 105, 123, 146 |
| abstract_inverted_index.service | 22, 111 |
| abstract_inverted_index.sharing | 34 |
| abstract_inverted_index.through | 80 |
| abstract_inverted_index.benefits | 130 |
| abstract_inverted_index.decision | 91 |
| abstract_inverted_index.desires. | 49 |
| abstract_inverted_index.ensuring | 125 |
| abstract_inverted_index.findings | 107 |
| abstract_inverted_index.identify | 96 |
| abstract_inverted_index.increase | 142 |
| abstract_inverted_index.indicate | 108 |
| abstract_inverted_index.presents | 10 |
| abstract_inverted_index.quality, | 112 |
| abstract_inverted_index.research | 1, 25 |
| abstract_inverted_index.settings | 9 |
| abstract_inverted_index.shopping | 139 |
| abstract_inverted_index.abilities | 44 |
| abstract_inverted_index.consumers | 15, 32, 127 |
| abstract_inverted_index.enjoyable | 138 |
| abstract_inverted_index.important | 97 |
| abstract_inverted_index.including | 134 |
| abstract_inverted_index.marketing | 61 |
| abstract_inverted_index.regarding | 16 |
| abstract_inverted_index.strategic | 60 |
| abstract_inverted_index.businesses | 58 |
| abstract_inverted_index.decisions. | 62 |
| abstract_inverted_index.enjoyment, | 113 |
| abstract_inverted_index.identifies | 65 |
| abstract_inverted_index.literature | 82 |
| abstract_inverted_index.negatively | 40 |
| abstract_inverted_index.predictive | 93 |
| abstract_inverted_index.speculates | 26 |
| abstract_inverted_index.understand | 128 |
| abstract_inverted_index.information | 35, 55, 76, 120 |
| abstract_inverted_index.interviews. | 86 |
| abstract_inverted_index.usefulness, | 114 |
| abstract_inverted_index.wide-spread | 12 |
| abstract_inverted_index.willingness | 51 |
| abstract_inverted_index.Consumers’ | 50 |
| abstract_inverted_index.consumers’ | 48 |
| abstract_inverted_index.experiences, | 140 |
| abstract_inverted_index.experiences. | 23 |
| abstract_inverted_index.implementing | 85 |
| abstract_inverted_index.interactions | 144 |
| abstract_inverted_index.malfunctions | 20 |
| abstract_inverted_index.motivational | 98 |
| abstract_inverted_index.retailers’ | 43 |
| abstract_inverted_index.apprehensions | 29 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5046237578 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I47301684 |
| citation_normalized_percentile.value | 0.25669211 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |