Shrinking Class Space for Enhanced Certainty in Semi-Supervised Learning Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2308.06777
Semi-supervised learning is attracting blooming attention, due to its success in combining unlabeled data. To mitigate potentially incorrect pseudo labels, recent frameworks mostly set a fixed confidence threshold to discard uncertain samples. This practice ensures high-quality pseudo labels, but incurs a relatively low utilization of the whole unlabeled set. In this work, our key insight is that these uncertain samples can be turned into certain ones, as long as the confusion classes for the top-1 class are detected and removed. Invoked by this, we propose a novel method dubbed ShrinkMatch to learn uncertain samples. For each uncertain sample, it adaptively seeks a shrunk class space, which merely contains the original top-1 class, as well as remaining less likely classes. Since the confusion ones are removed in this space, the re-calculated top-1 confidence can satisfy the pre-defined threshold. We then impose a consistency regularization between a pair of strongly and weakly augmented samples in the shrunk space to strive for discriminative representations. Furthermore, considering the varied reliability among uncertain samples and the gradually improved model during training, we correspondingly design two reweighting principles for our uncertain loss. Our method exhibits impressive performance on widely adopted benchmarks. Code is available at https://github.com/LiheYoung/ShrinkMatch.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2308.06777
- https://arxiv.org/pdf/2308.06777
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4385848839
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4385848839Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2308.06777Digital Object Identifier
- Title
-
Shrinking Class Space for Enhanced Certainty in Semi-Supervised LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-08-13Full publication date if available
- Authors
-
Lihe Yang, Zhen Zhao, Lei Qi, Yu Qiao, Yinghuan Shi, Hengshuang ZhaoList of authors in order
- Landing page
-
https://arxiv.org/abs/2308.06777Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2308.06777Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2308.06777Direct OA link when available
- Concepts
-
Discriminative model, Consistency (knowledge bases), Confusion, Class (philosophy), Computer science, Regularization (linguistics), Space (punctuation), Set (abstract data type), Machine learning, Artificial intelligence, Code (set theory), Programming language, Operating system, Psychoanalysis, PsychologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4385848839 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2308.06777 |
| ids.doi | https://doi.org/10.48550/arxiv.2308.06777 |
| ids.openalex | https://openalex.org/W4385848839 |
| fwci | |
| type | preprint |
| title | Shrinking Class Space for Enhanced Certainty in Semi-Supervised Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11307 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9968000054359436 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Domain Adaptation and Few-Shot Learning |
| topics[1].id | https://openalex.org/T12535 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9783999919891357 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning and Data Classification |
| topics[2].id | https://openalex.org/T10515 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9593999981880188 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1306 |
| topics[2].subfield.display_name | Cancer Research |
| topics[2].display_name | Cancer-related molecular mechanisms research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C97931131 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7293795347213745 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5282087 |
| concepts[0].display_name | Discriminative model |
| concepts[1].id | https://openalex.org/C2776436953 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6490756869316101 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5163215 |
| concepts[1].display_name | Consistency (knowledge bases) |
| concepts[2].id | https://openalex.org/C2781140086 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6366267204284668 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q557945 |
| concepts[2].display_name | Confusion |
| concepts[3].id | https://openalex.org/C2777212361 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6294183135032654 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5127848 |
| concepts[3].display_name | Class (philosophy) |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.6214345693588257 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C2776135515 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6039822101593018 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q17143721 |
| concepts[5].display_name | Regularization (linguistics) |
| concepts[6].id | https://openalex.org/C2778572836 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5186864137649536 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q380933 |
| concepts[6].display_name | Space (punctuation) |
| concepts[7].id | https://openalex.org/C177264268 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5153400301933289 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[7].display_name | Set (abstract data type) |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.5087750554084778 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4861259460449219 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C2776760102 |
| concepts[10].level | 3 |
| concepts[10].score | 0.4573608636856079 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q5139990 |
| concepts[10].display_name | Code (set theory) |
| concepts[11].id | https://openalex.org/C199360897 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[11].display_name | Programming language |
| concepts[12].id | https://openalex.org/C111919701 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[12].display_name | Operating system |
| concepts[13].id | https://openalex.org/C11171543 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q41630 |
| concepts[13].display_name | Psychoanalysis |
| concepts[14].id | https://openalex.org/C15744967 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[14].display_name | Psychology |
| keywords[0].id | https://openalex.org/keywords/discriminative-model |
| keywords[0].score | 0.7293795347213745 |
| keywords[0].display_name | Discriminative model |
| keywords[1].id | https://openalex.org/keywords/consistency |
| keywords[1].score | 0.6490756869316101 |
| keywords[1].display_name | Consistency (knowledge bases) |
| keywords[2].id | https://openalex.org/keywords/confusion |
| keywords[2].score | 0.6366267204284668 |
| keywords[2].display_name | Confusion |
| keywords[3].id | https://openalex.org/keywords/class |
| keywords[3].score | 0.6294183135032654 |
| keywords[3].display_name | Class (philosophy) |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.6214345693588257 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/regularization |
| keywords[5].score | 0.6039822101593018 |
| keywords[5].display_name | Regularization (linguistics) |
| keywords[6].id | https://openalex.org/keywords/space |
| keywords[6].score | 0.5186864137649536 |
| keywords[6].display_name | Space (punctuation) |
| keywords[7].id | https://openalex.org/keywords/set |
| keywords[7].score | 0.5153400301933289 |
| keywords[7].display_name | Set (abstract data type) |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.5087750554084778 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.4861259460449219 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/code |
| keywords[10].score | 0.4573608636856079 |
| keywords[10].display_name | Code (set theory) |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2308.06777 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2308.06777 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2308.06777 |
| locations[1].id | doi:10.48550/arxiv.2308.06777 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2308.06777 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5038009961 |
| authorships[0].author.orcid | https://orcid.org/0009-0007-5803-072X |
| authorships[0].author.display_name | Lihe Yang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yang, Lihe |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5072694516 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0796-4078 |
| authorships[1].author.display_name | Zhen Zhao |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhao, Zhen |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100667506 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7091-0702 |
| authorships[2].author.display_name | Lei Qi |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Qi, Lei |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100748135 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1889-2567 |
| authorships[3].author.display_name | Yu Qiao |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Qiao, Yu |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5055917015 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4534-7318 |
| authorships[4].author.display_name | Yinghuan Shi |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Shi, Yinghuan |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5078109015 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-8277-2706 |
| authorships[5].author.display_name | Hengshuang Zhao |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Zhao, Hengshuang |
| authorships[5].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2308.06777 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Shrinking Class Space for Enhanced Certainty in Semi-Supervised Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11307 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9968000054359436 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Domain Adaptation and Few-Shot Learning |
| related_works | https://openalex.org/W4389116644, https://openalex.org/W2153315159, https://openalex.org/W3103844505, https://openalex.org/W259157601, https://openalex.org/W4205463238, https://openalex.org/W2761785940, https://openalex.org/W1482209366, https://openalex.org/W2110523656, https://openalex.org/W2521627374, https://openalex.org/W2981954115 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2308.06777 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2308.06777 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2308.06777 |
| primary_location.id | pmh:oai:arXiv.org:2308.06777 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2308.06777 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2308.06777 |
| publication_date | 2023-08-13 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 24, 40, 85, 101, 140, 144 |
| abstract_inverted_index.In | 49 |
| abstract_inverted_index.To | 14 |
| abstract_inverted_index.We | 137 |
| abstract_inverted_index.as | 66, 68, 112, 114 |
| abstract_inverted_index.at | 198 |
| abstract_inverted_index.be | 61 |
| abstract_inverted_index.by | 81 |
| abstract_inverted_index.in | 10, 125, 152 |
| abstract_inverted_index.is | 2, 55, 196 |
| abstract_inverted_index.it | 98 |
| abstract_inverted_index.of | 44, 146 |
| abstract_inverted_index.on | 191 |
| abstract_inverted_index.to | 7, 28, 90, 156 |
| abstract_inverted_index.we | 83, 176 |
| abstract_inverted_index.For | 94 |
| abstract_inverted_index.Our | 186 |
| abstract_inverted_index.and | 78, 148, 169 |
| abstract_inverted_index.are | 76, 123 |
| abstract_inverted_index.but | 38 |
| abstract_inverted_index.can | 60, 132 |
| abstract_inverted_index.due | 6 |
| abstract_inverted_index.for | 72, 158, 182 |
| abstract_inverted_index.its | 8 |
| abstract_inverted_index.key | 53 |
| abstract_inverted_index.low | 42 |
| abstract_inverted_index.our | 52, 183 |
| abstract_inverted_index.set | 23 |
| abstract_inverted_index.the | 45, 69, 73, 108, 120, 128, 134, 153, 163, 170 |
| abstract_inverted_index.two | 179 |
| abstract_inverted_index.Code | 195 |
| abstract_inverted_index.This | 32 |
| abstract_inverted_index.each | 95 |
| abstract_inverted_index.into | 63 |
| abstract_inverted_index.less | 116 |
| abstract_inverted_index.long | 67 |
| abstract_inverted_index.ones | 122 |
| abstract_inverted_index.pair | 145 |
| abstract_inverted_index.set. | 48 |
| abstract_inverted_index.that | 56 |
| abstract_inverted_index.then | 138 |
| abstract_inverted_index.this | 50, 126 |
| abstract_inverted_index.well | 113 |
| abstract_inverted_index.Since | 119 |
| abstract_inverted_index.among | 166 |
| abstract_inverted_index.class | 75, 103 |
| abstract_inverted_index.data. | 13 |
| abstract_inverted_index.fixed | 25 |
| abstract_inverted_index.learn | 91 |
| abstract_inverted_index.loss. | 185 |
| abstract_inverted_index.model | 173 |
| abstract_inverted_index.novel | 86 |
| abstract_inverted_index.ones, | 65 |
| abstract_inverted_index.seeks | 100 |
| abstract_inverted_index.space | 155 |
| abstract_inverted_index.these | 57 |
| abstract_inverted_index.this, | 82 |
| abstract_inverted_index.top-1 | 74, 110, 130 |
| abstract_inverted_index.which | 105 |
| abstract_inverted_index.whole | 46 |
| abstract_inverted_index.work, | 51 |
| abstract_inverted_index.class, | 111 |
| abstract_inverted_index.design | 178 |
| abstract_inverted_index.dubbed | 88 |
| abstract_inverted_index.during | 174 |
| abstract_inverted_index.impose | 139 |
| abstract_inverted_index.incurs | 39 |
| abstract_inverted_index.likely | 117 |
| abstract_inverted_index.merely | 106 |
| abstract_inverted_index.method | 87, 187 |
| abstract_inverted_index.mostly | 22 |
| abstract_inverted_index.pseudo | 18, 36 |
| abstract_inverted_index.recent | 20 |
| abstract_inverted_index.shrunk | 102, 154 |
| abstract_inverted_index.space, | 104, 127 |
| abstract_inverted_index.strive | 157 |
| abstract_inverted_index.turned | 62 |
| abstract_inverted_index.varied | 164 |
| abstract_inverted_index.weakly | 149 |
| abstract_inverted_index.widely | 192 |
| abstract_inverted_index.Invoked | 80 |
| abstract_inverted_index.adopted | 193 |
| abstract_inverted_index.between | 143 |
| abstract_inverted_index.certain | 64 |
| abstract_inverted_index.classes | 71 |
| abstract_inverted_index.discard | 29 |
| abstract_inverted_index.ensures | 34 |
| abstract_inverted_index.insight | 54 |
| abstract_inverted_index.labels, | 19, 37 |
| abstract_inverted_index.propose | 84 |
| abstract_inverted_index.removed | 124 |
| abstract_inverted_index.sample, | 97 |
| abstract_inverted_index.samples | 59, 151, 168 |
| abstract_inverted_index.satisfy | 133 |
| abstract_inverted_index.success | 9 |
| abstract_inverted_index.blooming | 4 |
| abstract_inverted_index.classes. | 118 |
| abstract_inverted_index.contains | 107 |
| abstract_inverted_index.detected | 77 |
| abstract_inverted_index.exhibits | 188 |
| abstract_inverted_index.improved | 172 |
| abstract_inverted_index.learning | 1 |
| abstract_inverted_index.mitigate | 15 |
| abstract_inverted_index.original | 109 |
| abstract_inverted_index.practice | 33 |
| abstract_inverted_index.removed. | 79 |
| abstract_inverted_index.samples. | 31, 93 |
| abstract_inverted_index.strongly | 147 |
| abstract_inverted_index.augmented | 150 |
| abstract_inverted_index.available | 197 |
| abstract_inverted_index.combining | 11 |
| abstract_inverted_index.confusion | 70, 121 |
| abstract_inverted_index.gradually | 171 |
| abstract_inverted_index.incorrect | 17 |
| abstract_inverted_index.remaining | 115 |
| abstract_inverted_index.threshold | 27 |
| abstract_inverted_index.training, | 175 |
| abstract_inverted_index.uncertain | 30, 58, 92, 96, 167, 184 |
| abstract_inverted_index.unlabeled | 12, 47 |
| abstract_inverted_index.adaptively | 99 |
| abstract_inverted_index.attention, | 5 |
| abstract_inverted_index.attracting | 3 |
| abstract_inverted_index.confidence | 26, 131 |
| abstract_inverted_index.frameworks | 21 |
| abstract_inverted_index.impressive | 189 |
| abstract_inverted_index.principles | 181 |
| abstract_inverted_index.relatively | 41 |
| abstract_inverted_index.threshold. | 136 |
| abstract_inverted_index.ShrinkMatch | 89 |
| abstract_inverted_index.benchmarks. | 194 |
| abstract_inverted_index.considering | 162 |
| abstract_inverted_index.consistency | 141 |
| abstract_inverted_index.performance | 190 |
| abstract_inverted_index.potentially | 16 |
| abstract_inverted_index.pre-defined | 135 |
| abstract_inverted_index.reliability | 165 |
| abstract_inverted_index.reweighting | 180 |
| abstract_inverted_index.utilization | 43 |
| abstract_inverted_index.Furthermore, | 161 |
| abstract_inverted_index.high-quality | 35 |
| abstract_inverted_index.re-calculated | 129 |
| abstract_inverted_index.discriminative | 159 |
| abstract_inverted_index.regularization | 142 |
| abstract_inverted_index.Semi-supervised | 0 |
| abstract_inverted_index.correspondingly | 177 |
| abstract_inverted_index.representations. | 160 |
| abstract_inverted_index.https://github.com/LiheYoung/ShrinkMatch. | 199 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.7300000190734863 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile |