Signal Preprocessing in Instrument-Based Electronic Noses Leads to Parsimonious Predictive Models: Application to Olive Oil Quality Control Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/s25030737
Gas sensor-based electronic noses (e-noses) have gained considerable attention over the past thirty years, leading to the publication of numerous research studies focused on both the development of these instruments and their various applications. Nonetheless, the limited specificity of gas sensors, along with the common requirement for chemical identification, has led to the adaptation and incorporation of analytical chemistry instruments into the e-nose framework. Although instrument-based e-noses exhibit greater specificity to gasses than traditional ones, they still produce data that require correction in order to build reliable predictive models. In this work, we introduce the use of a multivariate signal processing workflow for datasets from a multi-capillary column ion mobility spectrometer-based e-nose. Adhering to the electronic nose philosophy, these workflows prioritized untargeted approaches, avoiding dependence on traditional peak integration techniques. A comprehensive validation process demonstrates that the application of this preprocessing strategy not only mitigates overfitting but also produces parsimonious models, where classification accuracy is maintained with simpler, more interpretable structures. This reduction in model complexity offers significant advantages, providing more efficient and robust models without compromising predictive performance. This strategy was successfully tested on an olive oil dataset, showcasing its capability to improve model parsimony and generalization performance.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s25030737
- OA Status
- gold
- References
- 88
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4406910389
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4406910389Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s25030737Digital Object Identifier
- Title
-
Signal Preprocessing in Instrument-Based Electronic Noses Leads to Parsimonious Predictive Models: Application to Olive Oil Quality ControlWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-25Full publication date if available
- Authors
-
Luis Fernández, Sergio Oller Moreno, Jordi Fonollosa, Rocío Garrido‐Delgado, Lourdes Arce, Andrés Martín-Gómez, Santiago Marco, Antonio PardoList of authors in order
- Landing page
-
https://doi.org/10.3390/s25030737Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3390/s25030737Direct OA link when available
- Concepts
-
Electronic nose, Overfitting, Workflow, Computer science, Preprocessor, Machine learning, Artificial intelligence, Predictive modelling, Data mining, Process (computing), Artificial neural network, Operating system, DatabaseTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
88Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4406910389 |
|---|---|
| doi | https://doi.org/10.3390/s25030737 |
| ids.doi | https://doi.org/10.3390/s25030737 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39943376 |
| ids.openalex | https://openalex.org/W4406910389 |
| fwci | 0.0 |
| mesh[0].qualifier_ui | Q000737 |
| mesh[0].descriptor_ui | D000069463 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | chemistry |
| mesh[0].descriptor_name | Olive Oil |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D062609 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Electronic Nose |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D011786 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Quality Control |
| mesh[3].qualifier_ui | Q000379 |
| mesh[3].descriptor_ui | D000075663 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | methods |
| mesh[3].descriptor_name | Ion Mobility Spectrometry |
| mesh[4].qualifier_ui | Q000737 |
| mesh[4].descriptor_ui | D000069463 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | chemistry |
| mesh[4].descriptor_name | Olive Oil |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D062609 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Electronic Nose |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D011786 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Quality Control |
| mesh[7].qualifier_ui | Q000379 |
| mesh[7].descriptor_ui | D000075663 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | methods |
| mesh[7].descriptor_name | Ion Mobility Spectrometry |
| mesh[8].qualifier_ui | Q000737 |
| mesh[8].descriptor_ui | D000069463 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | chemistry |
| mesh[8].descriptor_name | Olive Oil |
| mesh[9].qualifier_ui | Q000032 |
| mesh[9].descriptor_ui | D000069463 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | analysis |
| mesh[9].descriptor_name | Olive Oil |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D062609 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Electronic Nose |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D011786 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Quality Control |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D012815 |
| mesh[12].is_major_topic | True |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Signal Processing, Computer-Assisted |
| type | article |
| title | Signal Preprocessing in Instrument-Based Electronic Noses Leads to Parsimonious Predictive Models: Application to Olive Oil Quality Control |
| biblio.issue | 3 |
| biblio.volume | 25 |
| biblio.last_page | 737 |
| biblio.first_page | 737 |
| topics[0].id | https://openalex.org/T11667 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2204 |
| topics[0].subfield.display_name | Biomedical Engineering |
| topics[0].display_name | Advanced Chemical Sensor Technologies |
| topics[1].id | https://openalex.org/T10908 |
| topics[1].field.id | https://openalex.org/fields/16 |
| topics[1].field.display_name | Chemistry |
| topics[1].score | 0.9972000122070312 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1607 |
| topics[1].subfield.display_name | Spectroscopy |
| topics[1].display_name | Analytical Chemistry and Chromatography |
| topics[2].id | https://openalex.org/T10640 |
| topics[2].field.id | https://openalex.org/fields/16 |
| topics[2].field.display_name | Chemistry |
| topics[2].score | 0.9951000213623047 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1602 |
| topics[2].subfield.display_name | Analytical Chemistry |
| topics[2].display_name | Spectroscopy and Chemometric Analyses |
| funders[0].id | https://openalex.org/F4320328446 |
| funders[0].ror | https://ror.org/056h71x09 |
| funders[0].display_name | Institute for Bioengineering of Catalonia |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| concepts[0].id | https://openalex.org/C23895516 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8773401975631714 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q550092 |
| concepts[0].display_name | Electronic nose |
| concepts[1].id | https://openalex.org/C22019652 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7741893529891968 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q331309 |
| concepts[1].display_name | Overfitting |
| concepts[2].id | https://openalex.org/C177212765 |
| concepts[2].level | 2 |
| concepts[2].score | 0.645315945148468 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q627335 |
| concepts[2].display_name | Workflow |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.616427481174469 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C34736171 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5786120891571045 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q918333 |
| concepts[4].display_name | Preprocessor |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5474902987480164 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5368353128433228 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C45804977 |
| concepts[7].level | 2 |
| concepts[7].score | 0.48458659648895264 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7239673 |
| concepts[7].display_name | Predictive modelling |
| concepts[8].id | https://openalex.org/C124101348 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4639204740524292 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[8].display_name | Data mining |
| concepts[9].id | https://openalex.org/C98045186 |
| concepts[9].level | 2 |
| concepts[9].score | 0.42364126443862915 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[9].display_name | Process (computing) |
| concepts[10].id | https://openalex.org/C50644808 |
| concepts[10].level | 2 |
| concepts[10].score | 0.35012316703796387 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[10].display_name | Artificial neural network |
| concepts[11].id | https://openalex.org/C111919701 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[11].display_name | Operating system |
| concepts[12].id | https://openalex.org/C77088390 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[12].display_name | Database |
| keywords[0].id | https://openalex.org/keywords/electronic-nose |
| keywords[0].score | 0.8773401975631714 |
| keywords[0].display_name | Electronic nose |
| keywords[1].id | https://openalex.org/keywords/overfitting |
| keywords[1].score | 0.7741893529891968 |
| keywords[1].display_name | Overfitting |
| keywords[2].id | https://openalex.org/keywords/workflow |
| keywords[2].score | 0.645315945148468 |
| keywords[2].display_name | Workflow |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.616427481174469 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/preprocessor |
| keywords[4].score | 0.5786120891571045 |
| keywords[4].display_name | Preprocessor |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.5474902987480164 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.5368353128433228 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/predictive-modelling |
| keywords[7].score | 0.48458659648895264 |
| keywords[7].display_name | Predictive modelling |
| keywords[8].id | https://openalex.org/keywords/data-mining |
| keywords[8].score | 0.4639204740524292 |
| keywords[8].display_name | Data mining |
| keywords[9].id | https://openalex.org/keywords/process |
| keywords[9].score | 0.42364126443862915 |
| keywords[9].display_name | Process (computing) |
| keywords[10].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[10].score | 0.35012316703796387 |
| keywords[10].display_name | Artificial neural network |
| language | en |
| locations[0].id | doi:10.3390/s25030737 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s25030737 |
| locations[1].id | pmid:39943376 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39943376 |
| locations[2].id | pmh:oai:doaj.org/article:7b05c96c357b4ed5acdcafb1caaf8f3f |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sensors, Vol 25, Iss 3, p 737 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/7b05c96c357b4ed5acdcafb1caaf8f3f |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:11820981 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sensors (Basel) |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11820981 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5101845234 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9790-6287 |
| authorships[0].author.display_name | Luis Fernández |
| authorships[0].countries | ES |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I71999127 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Electronics and Biomedical Engineering, Universitat de Barcelona, 08028 Barcelona, Spain |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I4210147769 |
| authorships[0].affiliations[1].raw_affiliation_string | Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain |
| authorships[0].institutions[0].id | https://openalex.org/I4210147769 |
| authorships[0].institutions[0].ror | https://ror.org/056h71x09 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210132884, https://openalex.org/I4210147769, https://openalex.org/I4387153040 |
| authorships[0].institutions[0].country_code | ES |
| authorships[0].institutions[0].display_name | Institute for Bioengineering of Catalonia |
| authorships[0].institutions[1].id | https://openalex.org/I71999127 |
| authorships[0].institutions[1].ror | https://ror.org/021018s57 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I71999127 |
| authorships[0].institutions[1].country_code | ES |
| authorships[0].institutions[1].display_name | Universitat de Barcelona |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Luis Fernandez |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Electronics and Biomedical Engineering, Universitat de Barcelona, 08028 Barcelona, Spain, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain |
| authorships[1].author.id | https://openalex.org/A5071558152 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8994-1549 |
| authorships[1].author.display_name | Sergio Oller Moreno |
| authorships[1].countries | ES |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210147769 |
| authorships[1].affiliations[0].raw_affiliation_string | Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain |
| authorships[1].institutions[0].id | https://openalex.org/I4210147769 |
| authorships[1].institutions[0].ror | https://ror.org/056h71x09 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210132884, https://openalex.org/I4210147769, https://openalex.org/I4387153040 |
| authorships[1].institutions[0].country_code | ES |
| authorships[1].institutions[0].display_name | Institute for Bioengineering of Catalonia |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sergio Oller-Moreno |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain |
| authorships[2].author.id | https://openalex.org/A5059640664 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8854-8588 |
| authorships[2].author.display_name | Jordi Fonollosa |
| authorships[2].countries | ES |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210105141 |
| authorships[2].affiliations[0].raw_affiliation_string | Networking Biomedical Research Centre in the Subject Area of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I9617848 |
| authorships[2].affiliations[1].raw_affiliation_string | B2SLab, Departament d’Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain |
| authorships[2].affiliations[2].institution_ids | https://openalex.org/I4210127203, https://openalex.org/I4388446393 |
| authorships[2].affiliations[2].raw_affiliation_string | Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Esplugues de Llobregat, Spain |
| authorships[2].institutions[0].id | https://openalex.org/I4388446393 |
| authorships[2].institutions[0].ror | https://ror.org/00gy2ar74 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I4387153040, https://openalex.org/I4388446393 |
| authorships[2].institutions[0].country_code | |
| authorships[2].institutions[0].display_name | Institut de Recerca Sant Joan de Déu |
| authorships[2].institutions[1].id | https://openalex.org/I4210105141 |
| authorships[2].institutions[1].ror | https://ror.org/01gm5f004 |
| authorships[2].institutions[1].type | other |
| authorships[2].institutions[1].lineage | https://openalex.org/I4210105141 |
| authorships[2].institutions[1].country_code | ES |
| authorships[2].institutions[1].display_name | Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine |
| authorships[2].institutions[2].id | https://openalex.org/I4210127203 |
| authorships[2].institutions[2].ror | https://ror.org/03g7nb016 |
| authorships[2].institutions[2].type | facility |
| authorships[2].institutions[2].lineage | https://openalex.org/I4210127203, https://openalex.org/I4387153040 |
| authorships[2].institutions[2].country_code | ES |
| authorships[2].institutions[2].display_name | Sant Joan de Déu Research Foundation |
| authorships[2].institutions[3].id | https://openalex.org/I9617848 |
| authorships[2].institutions[3].ror | https://ror.org/03mb6wj31 |
| authorships[2].institutions[3].type | education |
| authorships[2].institutions[3].lineage | https://openalex.org/I9617848 |
| authorships[2].institutions[3].country_code | ES |
| authorships[2].institutions[3].display_name | Universitat Politècnica de Catalunya |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jordi Fonollosa |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | B2SLab, Departament d’Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain, Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Esplugues de Llobregat, Spain, Networking Biomedical Research Centre in the Subject Area of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain |
| authorships[3].author.id | https://openalex.org/A5033100382 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Rocío Garrido‐Delgado |
| authorships[3].countries | ES |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I53110688 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Analytical Chemistry, University of Córdoba, 14071 Córdoba, Spain |
| authorships[3].institutions[0].id | https://openalex.org/I53110688 |
| authorships[3].institutions[0].ror | https://ror.org/05yc77b46 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I53110688 |
| authorships[3].institutions[0].country_code | ES |
| authorships[3].institutions[0].display_name | University of Córdoba |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Rocío Garrido-Delgado |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Analytical Chemistry, University of Córdoba, 14071 Córdoba, Spain |
| authorships[4].author.id | https://openalex.org/A5074777376 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7130-8446 |
| authorships[4].author.display_name | Lourdes Arce |
| authorships[4].countries | ES |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I53110688 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Analytical Chemistry, University of Córdoba, 14071 Córdoba, Spain |
| authorships[4].institutions[0].id | https://openalex.org/I53110688 |
| authorships[4].institutions[0].ror | https://ror.org/05yc77b46 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I53110688 |
| authorships[4].institutions[0].country_code | ES |
| authorships[4].institutions[0].display_name | University of Córdoba |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Lourdes Arce |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Analytical Chemistry, University of Córdoba, 14071 Córdoba, Spain |
| authorships[5].author.id | https://openalex.org/A5021329830 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7899-7726 |
| authorships[5].author.display_name | Andrés Martín-Gómez |
| authorships[5].countries | ES |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I53110688 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Analytical Chemistry, University of Córdoba, 14071 Córdoba, Spain |
| authorships[5].institutions[0].id | https://openalex.org/I53110688 |
| authorships[5].institutions[0].ror | https://ror.org/05yc77b46 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I53110688 |
| authorships[5].institutions[0].country_code | ES |
| authorships[5].institutions[0].display_name | University of Córdoba |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Andrés Martín-Gómez |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Analytical Chemistry, University of Córdoba, 14071 Córdoba, Spain |
| authorships[6].author.id | https://openalex.org/A5064169996 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-2663-2965 |
| authorships[6].author.display_name | Santiago Marco |
| authorships[6].countries | ES |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I71999127 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Electronics and Biomedical Engineering, Universitat de Barcelona, 08028 Barcelona, Spain |
| authorships[6].affiliations[1].institution_ids | https://openalex.org/I4210147769 |
| authorships[6].affiliations[1].raw_affiliation_string | Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain |
| authorships[6].institutions[0].id | https://openalex.org/I4210147769 |
| authorships[6].institutions[0].ror | https://ror.org/056h71x09 |
| authorships[6].institutions[0].type | facility |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210132884, https://openalex.org/I4210147769, https://openalex.org/I4387153040 |
| authorships[6].institutions[0].country_code | ES |
| authorships[6].institutions[0].display_name | Institute for Bioengineering of Catalonia |
| authorships[6].institutions[1].id | https://openalex.org/I71999127 |
| authorships[6].institutions[1].ror | https://ror.org/021018s57 |
| authorships[6].institutions[1].type | education |
| authorships[6].institutions[1].lineage | https://openalex.org/I71999127 |
| authorships[6].institutions[1].country_code | ES |
| authorships[6].institutions[1].display_name | Universitat de Barcelona |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Santiago Marco |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Electronics and Biomedical Engineering, Universitat de Barcelona, 08028 Barcelona, Spain, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain |
| authorships[7].author.id | https://openalex.org/A5059311736 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-4369-544X |
| authorships[7].author.display_name | Antonio Pardo |
| authorships[7].countries | ES |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I71999127 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Electronics and Biomedical Engineering, Universitat de Barcelona, 08028 Barcelona, Spain |
| authorships[7].institutions[0].id | https://openalex.org/I71999127 |
| authorships[7].institutions[0].ror | https://ror.org/021018s57 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I71999127 |
| authorships[7].institutions[0].country_code | ES |
| authorships[7].institutions[0].display_name | Universitat de Barcelona |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Antonio Pardo |
| authorships[7].is_corresponding | True |
| authorships[7].raw_affiliation_strings | Department of Electronics and Biomedical Engineering, Universitat de Barcelona, 08028 Barcelona, Spain |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3390/s25030737 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Signal Preprocessing in Instrument-Based Electronic Noses Leads to Parsimonious Predictive Models: Application to Olive Oil Quality Control |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11667 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2204 |
| primary_topic.subfield.display_name | Biomedical Engineering |
| primary_topic.display_name | Advanced Chemical Sensor Technologies |
| related_works | https://openalex.org/W4362597605, https://openalex.org/W1574414179, https://openalex.org/W4297676672, https://openalex.org/W3009056573, https://openalex.org/W2922073769, https://openalex.org/W4281702477, https://openalex.org/W2490526372, https://openalex.org/W2991587282, https://openalex.org/W4288018740, https://openalex.org/W3008919350 |
| cited_by_count | 0 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3390/s25030737 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s25030737 |
| primary_location.id | doi:10.3390/s25030737 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s25030737 |
| publication_date | 2025-01-25 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W1997082874, https://openalex.org/W4388155462, https://openalex.org/W4387536676, https://openalex.org/W4381434481, https://openalex.org/W4402623520, https://openalex.org/W4323663589, https://openalex.org/W4403679498, https://openalex.org/W4405467925, https://openalex.org/W4384819942, https://openalex.org/W4317615204, https://openalex.org/W4205260344, https://openalex.org/W2894063412, https://openalex.org/W2293641351, https://openalex.org/W4366824893, https://openalex.org/W4323796681, https://openalex.org/W4200330482, https://openalex.org/W2063872198, https://openalex.org/W2047470119, https://openalex.org/W2083818882, https://openalex.org/W2603458175, https://openalex.org/W3098324742, https://openalex.org/W1989010258, https://openalex.org/W2087393239, https://openalex.org/W6630057846, https://openalex.org/W1976331404, https://openalex.org/W2135378461, https://openalex.org/W4292913110, https://openalex.org/W2040315703, https://openalex.org/W2008713753, https://openalex.org/W2049442567, https://openalex.org/W2505586275, https://openalex.org/W2136489725, https://openalex.org/W2000981081, https://openalex.org/W2027100762, https://openalex.org/W2132711123, https://openalex.org/W2045813943, https://openalex.org/W2083184214, https://openalex.org/W6665195790, https://openalex.org/W2076875740, https://openalex.org/W2062038148, https://openalex.org/W96414549, https://openalex.org/W2091495121, https://openalex.org/W562101965, https://openalex.org/W2087481249, https://openalex.org/W2016276933, https://openalex.org/W2046627400, https://openalex.org/W6677889656, https://openalex.org/W3199100718, https://openalex.org/W4282576825, https://openalex.org/W4386170128, https://openalex.org/W3124239741, https://openalex.org/W2769173390, https://openalex.org/W2559537122, https://openalex.org/W2029242574, https://openalex.org/W2109606373, https://openalex.org/W2150823344, https://openalex.org/W3000210455, https://openalex.org/W2124830968, https://openalex.org/W2075624359, https://openalex.org/W2079724595, https://openalex.org/W2158940042, https://openalex.org/W2103038618, https://openalex.org/W6651340805, https://openalex.org/W2062123859, https://openalex.org/W2170903587, https://openalex.org/W1967542684, https://openalex.org/W2016365402, https://openalex.org/W2089370605, https://openalex.org/W2150544808, https://openalex.org/W2019528349, https://openalex.org/W1965524645, https://openalex.org/W2149211098, https://openalex.org/W2020502388, https://openalex.org/W6999673145, https://openalex.org/W4253987207, https://openalex.org/W4312249878, https://openalex.org/W2807326971, https://openalex.org/W2810548347, https://openalex.org/W3028325088, https://openalex.org/W2919237169, https://openalex.org/W1973298503, https://openalex.org/W2899159580, https://openalex.org/W3036194162, https://openalex.org/W2901294913, https://openalex.org/W4283776438, https://openalex.org/W2058449664, https://openalex.org/W2120858595, https://openalex.org/W2002633507 |
| referenced_works_count | 88 |
| abstract_inverted_index.A | 130 |
| abstract_inverted_index.a | 97, 105 |
| abstract_inverted_index.In | 89 |
| abstract_inverted_index.an | 185 |
| abstract_inverted_index.in | 82, 163 |
| abstract_inverted_index.is | 154 |
| abstract_inverted_index.of | 18, 27, 38, 56, 96, 138 |
| abstract_inverted_index.on | 23, 125, 184 |
| abstract_inverted_index.to | 15, 51, 70, 84, 113, 192 |
| abstract_inverted_index.we | 92 |
| abstract_inverted_index.Gas | 0 |
| abstract_inverted_index.and | 30, 54, 172, 196 |
| abstract_inverted_index.but | 146 |
| abstract_inverted_index.for | 46, 102 |
| abstract_inverted_index.gas | 39 |
| abstract_inverted_index.has | 49 |
| abstract_inverted_index.ion | 108 |
| abstract_inverted_index.its | 190 |
| abstract_inverted_index.led | 50 |
| abstract_inverted_index.not | 142 |
| abstract_inverted_index.oil | 187 |
| abstract_inverted_index.the | 10, 16, 25, 35, 43, 52, 61, 94, 114, 136 |
| abstract_inverted_index.use | 95 |
| abstract_inverted_index.was | 181 |
| abstract_inverted_index.This | 161, 179 |
| abstract_inverted_index.also | 147 |
| abstract_inverted_index.both | 24 |
| abstract_inverted_index.data | 78 |
| abstract_inverted_index.from | 104 |
| abstract_inverted_index.have | 5 |
| abstract_inverted_index.into | 60 |
| abstract_inverted_index.more | 158, 170 |
| abstract_inverted_index.nose | 116 |
| abstract_inverted_index.only | 143 |
| abstract_inverted_index.over | 9 |
| abstract_inverted_index.past | 11 |
| abstract_inverted_index.peak | 127 |
| abstract_inverted_index.than | 72 |
| abstract_inverted_index.that | 79, 135 |
| abstract_inverted_index.they | 75 |
| abstract_inverted_index.this | 90, 139 |
| abstract_inverted_index.with | 42, 156 |
| abstract_inverted_index.along | 41 |
| abstract_inverted_index.build | 85 |
| abstract_inverted_index.model | 164, 194 |
| abstract_inverted_index.noses | 3 |
| abstract_inverted_index.olive | 186 |
| abstract_inverted_index.ones, | 74 |
| abstract_inverted_index.order | 83 |
| abstract_inverted_index.still | 76 |
| abstract_inverted_index.their | 31 |
| abstract_inverted_index.these | 28, 118 |
| abstract_inverted_index.where | 151 |
| abstract_inverted_index.work, | 91 |
| abstract_inverted_index.column | 107 |
| abstract_inverted_index.common | 44 |
| abstract_inverted_index.e-nose | 62 |
| abstract_inverted_index.gained | 6 |
| abstract_inverted_index.gasses | 71 |
| abstract_inverted_index.models | 174 |
| abstract_inverted_index.offers | 166 |
| abstract_inverted_index.robust | 173 |
| abstract_inverted_index.signal | 99 |
| abstract_inverted_index.tested | 183 |
| abstract_inverted_index.thirty | 12 |
| abstract_inverted_index.years, | 13 |
| abstract_inverted_index.e-nose. | 111 |
| abstract_inverted_index.e-noses | 66 |
| abstract_inverted_index.exhibit | 67 |
| abstract_inverted_index.focused | 22 |
| abstract_inverted_index.greater | 68 |
| abstract_inverted_index.improve | 193 |
| abstract_inverted_index.leading | 14 |
| abstract_inverted_index.limited | 36 |
| abstract_inverted_index.models, | 150 |
| abstract_inverted_index.models. | 88 |
| abstract_inverted_index.process | 133 |
| abstract_inverted_index.produce | 77 |
| abstract_inverted_index.require | 80 |
| abstract_inverted_index.studies | 21 |
| abstract_inverted_index.various | 32 |
| abstract_inverted_index.without | 175 |
| abstract_inverted_index.Adhering | 112 |
| abstract_inverted_index.Although | 64 |
| abstract_inverted_index.accuracy | 153 |
| abstract_inverted_index.avoiding | 123 |
| abstract_inverted_index.chemical | 47 |
| abstract_inverted_index.dataset, | 188 |
| abstract_inverted_index.datasets | 103 |
| abstract_inverted_index.mobility | 109 |
| abstract_inverted_index.numerous | 19 |
| abstract_inverted_index.produces | 148 |
| abstract_inverted_index.reliable | 86 |
| abstract_inverted_index.research | 20 |
| abstract_inverted_index.sensors, | 40 |
| abstract_inverted_index.simpler, | 157 |
| abstract_inverted_index.strategy | 141, 180 |
| abstract_inverted_index.workflow | 101 |
| abstract_inverted_index.(e-noses) | 4 |
| abstract_inverted_index.attention | 8 |
| abstract_inverted_index.chemistry | 58 |
| abstract_inverted_index.efficient | 171 |
| abstract_inverted_index.introduce | 93 |
| abstract_inverted_index.mitigates | 144 |
| abstract_inverted_index.parsimony | 195 |
| abstract_inverted_index.providing | 169 |
| abstract_inverted_index.reduction | 162 |
| abstract_inverted_index.workflows | 119 |
| abstract_inverted_index.adaptation | 53 |
| abstract_inverted_index.analytical | 57 |
| abstract_inverted_index.capability | 191 |
| abstract_inverted_index.complexity | 165 |
| abstract_inverted_index.correction | 81 |
| abstract_inverted_index.dependence | 124 |
| abstract_inverted_index.electronic | 2, 115 |
| abstract_inverted_index.framework. | 63 |
| abstract_inverted_index.maintained | 155 |
| abstract_inverted_index.predictive | 87, 177 |
| abstract_inverted_index.processing | 100 |
| abstract_inverted_index.showcasing | 189 |
| abstract_inverted_index.untargeted | 121 |
| abstract_inverted_index.validation | 132 |
| abstract_inverted_index.advantages, | 168 |
| abstract_inverted_index.application | 137 |
| abstract_inverted_index.approaches, | 122 |
| abstract_inverted_index.development | 26 |
| abstract_inverted_index.instruments | 29, 59 |
| abstract_inverted_index.integration | 128 |
| abstract_inverted_index.overfitting | 145 |
| abstract_inverted_index.philosophy, | 117 |
| abstract_inverted_index.prioritized | 120 |
| abstract_inverted_index.publication | 17 |
| abstract_inverted_index.requirement | 45 |
| abstract_inverted_index.significant | 167 |
| abstract_inverted_index.specificity | 37, 69 |
| abstract_inverted_index.structures. | 160 |
| abstract_inverted_index.techniques. | 129 |
| abstract_inverted_index.traditional | 73, 126 |
| abstract_inverted_index.Nonetheless, | 34 |
| abstract_inverted_index.compromising | 176 |
| abstract_inverted_index.considerable | 7 |
| abstract_inverted_index.demonstrates | 134 |
| abstract_inverted_index.multivariate | 98 |
| abstract_inverted_index.parsimonious | 149 |
| abstract_inverted_index.performance. | 178, 198 |
| abstract_inverted_index.sensor-based | 1 |
| abstract_inverted_index.successfully | 182 |
| abstract_inverted_index.applications. | 33 |
| abstract_inverted_index.comprehensive | 131 |
| abstract_inverted_index.incorporation | 55 |
| abstract_inverted_index.interpretable | 159 |
| abstract_inverted_index.preprocessing | 140 |
| abstract_inverted_index.classification | 152 |
| abstract_inverted_index.generalization | 197 |
| abstract_inverted_index.identification, | 48 |
| abstract_inverted_index.multi-capillary | 106 |
| abstract_inverted_index.instrument-based | 65 |
| abstract_inverted_index.spectrometer-based | 110 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5059311736 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| corresponding_institution_ids | https://openalex.org/I71999127 |
| citation_normalized_percentile.value | 0.02580802 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |