Signal Processing-Free Intelligent Model for Power Quality Disturbances Identification Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1109/access.2025.3528296
Integrating different types of renewable energy sources in the power system substantially challenges the power quality (PQ), directly affecting the system’s stability and service life span. The rise of power quality disturbances (PQD) generates irregularities in voltage and current waveforms, harming smart grid networks and linked devices. Traditional methods for PQD classification use complicated feature extraction techniques, which can be computationally expensive and lack scalability. This research proposes applying basic convolutional neural network (CNN) models for automated PQD detection and categorization as a prospective solution to these issues. By directly examining PQD images generated from signal data, these models reduce the requirement for human-crafted features. The study analyzes alternative CNN setups, training datasets, and disturbance types to measure model performance. The results demonstrate that these simple CNN models maintain stable accuracy values in normal and noisy environments, even with increasing classes and noise, the models managed to maintain a high-performance level with up to 99.39% accuracy for 17 classes when the Adam optimizer was used instead of RMSprop. The models could deal with noise-related disturbances, still achieving accuracy as high as 96.42% when trained by just 50% of the dataset under 30dB SNR (Signal to Noise Ratio) conditions. Moreover, comparing the two frequencies on 50Hz and 60Hz performance does not show the equivalent models’ robustness over different operating levels. This study highlights the potential of CNNs in boosting power quality disturbance categorization and presents paths for further inquiry in model refining and optimization. The study focuses on CNN-based models applied in power quality disturbance detection and classification research.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2025.3528296
- OA Status
- gold
- Cited By
- 5
- References
- 31
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4406258592
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4406258592Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2025.3528296Digital Object Identifier
- Title
-
Signal Processing-Free Intelligent Model for Power Quality Disturbances IdentificationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Mohammed F. Al-mashdali, Asif Islam, Abdulbasit Hassan, Md Shafiullah, Mujahed Al‐Dhaifallah, Khalid AlfuwailList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2025.3528296Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/access.2025.3528296Direct OA link when available
- Concepts
-
Computer science, Robustness (evolution), Artificial intelligence, Boosting (machine learning), Convolutional neural network, Machine learning, Scalability, Pattern recognition (psychology), Noise (video), Data mining, Database, Image (mathematics), Biochemistry, Chemistry, GeneTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5Per-year citation counts (last 5 years)
- References (count)
-
31Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4406258592 |
|---|---|
| doi | https://doi.org/10.1109/access.2025.3528296 |
| ids.doi | https://doi.org/10.1109/access.2025.3528296 |
| ids.openalex | https://openalex.org/W4406258592 |
| fwci | 10.1078287 |
| type | article |
| title | Signal Processing-Free Intelligent Model for Power Quality Disturbances Identification |
| biblio.issue | |
| biblio.volume | 13 |
| biblio.last_page | 9922 |
| biblio.first_page | 9910 |
| topics[0].id | https://openalex.org/T10573 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9988999962806702 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Power Quality and Harmonics |
| topics[1].id | https://openalex.org/T11052 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9958999752998352 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Energy Load and Power Forecasting |
| topics[2].id | https://openalex.org/T11343 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9952999949455261 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Power Transformer Diagnostics and Insulation |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8257075548171997 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C63479239 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6056097745895386 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[1].display_name | Robustness (evolution) |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6050406098365784 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C46686674 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5617774128913879 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q466303 |
| concepts[3].display_name | Boosting (machine learning) |
| concepts[4].id | https://openalex.org/C81363708 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5602192878723145 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[4].display_name | Convolutional neural network |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4613279402256012 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C48044578 |
| concepts[6].level | 2 |
| concepts[6].score | 0.43223845958709717 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q727490 |
| concepts[6].display_name | Scalability |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4311523735523224 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C99498987 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4296957850456238 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[8].display_name | Noise (video) |
| concepts[9].id | https://openalex.org/C124101348 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3426862359046936 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[9].display_name | Data mining |
| concepts[10].id | https://openalex.org/C77088390 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[10].display_name | Database |
| concepts[11].id | https://openalex.org/C115961682 |
| concepts[11].level | 2 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[11].display_name | Image (mathematics) |
| concepts[12].id | https://openalex.org/C55493867 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[12].display_name | Biochemistry |
| concepts[13].id | https://openalex.org/C185592680 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[13].display_name | Chemistry |
| concepts[14].id | https://openalex.org/C104317684 |
| concepts[14].level | 2 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[14].display_name | Gene |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8257075548171997 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/robustness |
| keywords[1].score | 0.6056097745895386 |
| keywords[1].display_name | Robustness (evolution) |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6050406098365784 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/boosting |
| keywords[3].score | 0.5617774128913879 |
| keywords[3].display_name | Boosting (machine learning) |
| keywords[4].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[4].score | 0.5602192878723145 |
| keywords[4].display_name | Convolutional neural network |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.4613279402256012 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/scalability |
| keywords[6].score | 0.43223845958709717 |
| keywords[6].display_name | Scalability |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.4311523735523224 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/noise |
| keywords[8].score | 0.4296957850456238 |
| keywords[8].display_name | Noise (video) |
| keywords[9].id | https://openalex.org/keywords/data-mining |
| keywords[9].score | 0.3426862359046936 |
| keywords[9].display_name | Data mining |
| language | en |
| locations[0].id | doi:10.1109/access.2025.3528296 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2025.3528296 |
| locations[1].id | pmh:oai:doaj.org/article:f6d819b755eb4b7fad10f53267563dbc |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].source.host_organization_lineage | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 13, Pp 9910-9922 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/f6d819b755eb4b7fad10f53267563dbc |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5115839773 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Mohammed F. Al-mashdali |
| authorships[0].countries | SA |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I134085113 |
| authorships[0].affiliations[0].raw_affiliation_string | Electrical Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia |
| authorships[0].institutions[0].id | https://openalex.org/I134085113 |
| authorships[0].institutions[0].ror | https://ror.org/03yez3163 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I134085113 |
| authorships[0].institutions[0].country_code | SA |
| authorships[0].institutions[0].display_name | King Fahd University of Petroleum and Minerals |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mohammed F. Al-mashdali |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Electrical Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia |
| authorships[1].author.id | https://openalex.org/A5081810966 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8235-7182 |
| authorships[1].author.display_name | Asif Islam |
| authorships[1].countries | SA |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I134085113 |
| authorships[1].affiliations[0].raw_affiliation_string | Interdisciplinary Research Center for Sustainable Energy Systems, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I134085113 |
| authorships[1].affiliations[1].raw_affiliation_string | Electrical Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia |
| authorships[1].affiliations[2].institution_ids | https://openalex.org/I134085113 |
| authorships[1].affiliations[2].raw_affiliation_string | High Voltage Laboratory, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia |
| authorships[1].institutions[0].id | https://openalex.org/I134085113 |
| authorships[1].institutions[0].ror | https://ror.org/03yez3163 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I134085113 |
| authorships[1].institutions[0].country_code | SA |
| authorships[1].institutions[0].display_name | King Fahd University of Petroleum and Minerals |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Asif Islam |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Electrical Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia, High Voltage Laboratory, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia, Interdisciplinary Research Center for Sustainable Energy Systems, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia |
| authorships[2].author.id | https://openalex.org/A5113982969 |
| authorships[2].author.orcid | https://orcid.org/0009-0007-6399-4590 |
| authorships[2].author.display_name | Abdulbasit Hassan |
| authorships[2].countries | SA |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I134085113 |
| authorships[2].affiliations[0].raw_affiliation_string | Control and Instrumentation Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia |
| authorships[2].institutions[0].id | https://openalex.org/I134085113 |
| authorships[2].institutions[0].ror | https://ror.org/03yez3163 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I134085113 |
| authorships[2].institutions[0].country_code | SA |
| authorships[2].institutions[0].display_name | King Fahd University of Petroleum and Minerals |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Abdulbasit Hassan |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Control and Instrumentation Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia |
| authorships[3].author.id | https://openalex.org/A5075386163 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2282-5663 |
| authorships[3].author.display_name | Md Shafiullah |
| authorships[3].countries | SA |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I134085113 |
| authorships[3].affiliations[0].raw_affiliation_string | Interdisciplinary Research Center for Sustainable Energy Systems, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I134085113 |
| authorships[3].affiliations[1].raw_affiliation_string | Control and Instrumentation Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia |
| authorships[3].institutions[0].id | https://openalex.org/I134085113 |
| authorships[3].institutions[0].ror | https://ror.org/03yez3163 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I134085113 |
| authorships[3].institutions[0].country_code | SA |
| authorships[3].institutions[0].display_name | King Fahd University of Petroleum and Minerals |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Md Shafiullah |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Control and Instrumentation Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia, Interdisciplinary Research Center for Sustainable Energy Systems, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia |
| authorships[4].author.id | https://openalex.org/A5068864964 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8441-2146 |
| authorships[4].author.display_name | Mujahed Al‐Dhaifallah |
| authorships[4].countries | SA |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I134085113 |
| authorships[4].affiliations[0].raw_affiliation_string | Interdisciplinary Research Center for Sustainable Energy Systems, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I134085113 |
| authorships[4].affiliations[1].raw_affiliation_string | Control and Instrumentation Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia |
| authorships[4].institutions[0].id | https://openalex.org/I134085113 |
| authorships[4].institutions[0].ror | https://ror.org/03yez3163 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I134085113 |
| authorships[4].institutions[0].country_code | SA |
| authorships[4].institutions[0].display_name | King Fahd University of Petroleum and Minerals |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Mujahed Al-Dhaifallah |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Control and Instrumentation Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia, Interdisciplinary Research Center for Sustainable Energy Systems, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia |
| authorships[5].author.id | https://openalex.org/A5115722105 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Khalid Alfuwail |
| authorships[5].countries | SA |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I134085113 |
| authorships[5].affiliations[0].raw_affiliation_string | Control and Instrumentation Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia |
| authorships[5].institutions[0].id | https://openalex.org/I134085113 |
| authorships[5].institutions[0].ror | https://ror.org/03yez3163 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I134085113 |
| authorships[5].institutions[0].country_code | SA |
| authorships[5].institutions[0].display_name | King Fahd University of Petroleum and Minerals |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Khalid Al-Fuwail |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Control and Instrumentation Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/access.2025.3528296 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Signal Processing-Free Intelligent Model for Power Quality Disturbances Identification |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10573 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9988999962806702 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Power Quality and Harmonics |
| related_works | https://openalex.org/W2125652721, https://openalex.org/W1540371141, https://openalex.org/W1549363203, https://openalex.org/W2147697413, https://openalex.org/W2154063878, https://openalex.org/W4231274751, https://openalex.org/W2556012038, https://openalex.org/W1489772951, https://openalex.org/W1538046993, https://openalex.org/W2067869703 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2025.3528296 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2025.3528296 |
| primary_location.id | doi:10.1109/access.2025.3528296 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2025.3528296 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4391114427, https://openalex.org/W2735064727, https://openalex.org/W2553261477, https://openalex.org/W4313023174, https://openalex.org/W2790176663, https://openalex.org/W1999508011, https://openalex.org/W3033200349, https://openalex.org/W2106758036, https://openalex.org/W2613854425, https://openalex.org/W2889695092, https://openalex.org/W2090736190, https://openalex.org/W1571081682, https://openalex.org/W2587165555, https://openalex.org/W2969811671, https://openalex.org/W2551310898, https://openalex.org/W2085843260, https://openalex.org/W4392026114, https://openalex.org/W3140854437, https://openalex.org/W2885153772, https://openalex.org/W4392799935, https://openalex.org/W4399920196, https://openalex.org/W4392863725, https://openalex.org/W4378903471, https://openalex.org/W3091738834, https://openalex.org/W2971663256, https://openalex.org/W2899839677, https://openalex.org/W3135903359, https://openalex.org/W3191576354, https://openalex.org/W4232181920, https://openalex.org/W2323081445, https://openalex.org/W2919115771 |
| referenced_works_count | 31 |
| abstract_inverted_index.a | 82, 148 |
| abstract_inverted_index.17 | 157 |
| abstract_inverted_index.By | 88 |
| abstract_inverted_index.as | 81, 178, 180 |
| abstract_inverted_index.be | 59 |
| abstract_inverted_index.by | 184 |
| abstract_inverted_index.in | 7, 35, 132, 226, 238, 250 |
| abstract_inverted_index.of | 3, 28, 166, 187, 224 |
| abstract_inverted_index.on | 203, 246 |
| abstract_inverted_index.to | 85, 116, 146, 153, 194 |
| abstract_inverted_index.up | 152 |
| abstract_inverted_index.50% | 186 |
| abstract_inverted_index.CNN | 109, 126 |
| abstract_inverted_index.PQD | 50, 77, 91 |
| abstract_inverted_index.SNR | 192 |
| abstract_inverted_index.The | 26, 105, 120, 168, 243 |
| abstract_inverted_index.and | 22, 37, 44, 62, 79, 113, 134, 141, 205, 232, 241, 255 |
| abstract_inverted_index.can | 58 |
| abstract_inverted_index.for | 49, 75, 102, 156, 235 |
| abstract_inverted_index.not | 209 |
| abstract_inverted_index.the | 8, 13, 19, 100, 143, 160, 188, 200, 211, 222 |
| abstract_inverted_index.two | 201 |
| abstract_inverted_index.use | 52 |
| abstract_inverted_index.was | 163 |
| abstract_inverted_index.30dB | 191 |
| abstract_inverted_index.50Hz | 204 |
| abstract_inverted_index.60Hz | 206 |
| abstract_inverted_index.Adam | 161 |
| abstract_inverted_index.CNNs | 225 |
| abstract_inverted_index.This | 65, 219 |
| abstract_inverted_index.deal | 171 |
| abstract_inverted_index.does | 208 |
| abstract_inverted_index.even | 137 |
| abstract_inverted_index.from | 94 |
| abstract_inverted_index.grid | 42 |
| abstract_inverted_index.high | 179 |
| abstract_inverted_index.just | 185 |
| abstract_inverted_index.lack | 63 |
| abstract_inverted_index.life | 24 |
| abstract_inverted_index.over | 215 |
| abstract_inverted_index.rise | 27 |
| abstract_inverted_index.show | 210 |
| abstract_inverted_index.that | 123 |
| abstract_inverted_index.used | 164 |
| abstract_inverted_index.when | 159, 182 |
| abstract_inverted_index.with | 138, 151, 172 |
| abstract_inverted_index.(CNN) | 73 |
| abstract_inverted_index.(PQ), | 16 |
| abstract_inverted_index.(PQD) | 32 |
| abstract_inverted_index.Noise | 195 |
| abstract_inverted_index.basic | 69 |
| abstract_inverted_index.could | 170 |
| abstract_inverted_index.data, | 96 |
| abstract_inverted_index.level | 150 |
| abstract_inverted_index.model | 118, 239 |
| abstract_inverted_index.noisy | 135 |
| abstract_inverted_index.paths | 234 |
| abstract_inverted_index.power | 9, 14, 29, 228, 251 |
| abstract_inverted_index.smart | 41 |
| abstract_inverted_index.span. | 25 |
| abstract_inverted_index.still | 175 |
| abstract_inverted_index.study | 106, 220, 244 |
| abstract_inverted_index.these | 86, 97, 124 |
| abstract_inverted_index.types | 2, 115 |
| abstract_inverted_index.under | 190 |
| abstract_inverted_index.which | 57 |
| abstract_inverted_index.96.42% | 181 |
| abstract_inverted_index.99.39% | 154 |
| abstract_inverted_index.Ratio) | 196 |
| abstract_inverted_index.energy | 5 |
| abstract_inverted_index.images | 92 |
| abstract_inverted_index.linked | 45 |
| abstract_inverted_index.models | 74, 98, 127, 144, 169, 248 |
| abstract_inverted_index.neural | 71 |
| abstract_inverted_index.noise, | 142 |
| abstract_inverted_index.normal | 133 |
| abstract_inverted_index.reduce | 99 |
| abstract_inverted_index.signal | 95 |
| abstract_inverted_index.simple | 125 |
| abstract_inverted_index.stable | 129 |
| abstract_inverted_index.system | 10 |
| abstract_inverted_index.values | 131 |
| abstract_inverted_index.(Signal | 193 |
| abstract_inverted_index.applied | 249 |
| abstract_inverted_index.classes | 140, 158 |
| abstract_inverted_index.current | 38 |
| abstract_inverted_index.dataset | 189 |
| abstract_inverted_index.feature | 54 |
| abstract_inverted_index.focuses | 245 |
| abstract_inverted_index.further | 236 |
| abstract_inverted_index.harming | 40 |
| abstract_inverted_index.inquiry | 237 |
| abstract_inverted_index.instead | 165 |
| abstract_inverted_index.issues. | 87 |
| abstract_inverted_index.levels. | 218 |
| abstract_inverted_index.managed | 145 |
| abstract_inverted_index.measure | 117 |
| abstract_inverted_index.methods | 48 |
| abstract_inverted_index.network | 72 |
| abstract_inverted_index.quality | 15, 30, 229, 252 |
| abstract_inverted_index.results | 121 |
| abstract_inverted_index.service | 23 |
| abstract_inverted_index.setups, | 110 |
| abstract_inverted_index.sources | 6 |
| abstract_inverted_index.trained | 183 |
| abstract_inverted_index.voltage | 36 |
| abstract_inverted_index.RMSprop. | 167 |
| abstract_inverted_index.accuracy | 130, 155, 177 |
| abstract_inverted_index.analyzes | 107 |
| abstract_inverted_index.applying | 68 |
| abstract_inverted_index.boosting | 227 |
| abstract_inverted_index.devices. | 46 |
| abstract_inverted_index.directly | 17, 89 |
| abstract_inverted_index.maintain | 128, 147 |
| abstract_inverted_index.networks | 43 |
| abstract_inverted_index.presents | 233 |
| abstract_inverted_index.proposes | 67 |
| abstract_inverted_index.refining | 240 |
| abstract_inverted_index.research | 66 |
| abstract_inverted_index.solution | 84 |
| abstract_inverted_index.training | 111 |
| abstract_inverted_index.CNN-based | 247 |
| abstract_inverted_index.Moreover, | 198 |
| abstract_inverted_index.achieving | 176 |
| abstract_inverted_index.affecting | 18 |
| abstract_inverted_index.automated | 76 |
| abstract_inverted_index.comparing | 199 |
| abstract_inverted_index.datasets, | 112 |
| abstract_inverted_index.detection | 78, 254 |
| abstract_inverted_index.different | 1, 216 |
| abstract_inverted_index.examining | 90 |
| abstract_inverted_index.expensive | 61 |
| abstract_inverted_index.features. | 104 |
| abstract_inverted_index.generated | 93 |
| abstract_inverted_index.generates | 33 |
| abstract_inverted_index.operating | 217 |
| abstract_inverted_index.optimizer | 162 |
| abstract_inverted_index.potential | 223 |
| abstract_inverted_index.renewable | 4 |
| abstract_inverted_index.research. | 257 |
| abstract_inverted_index.stability | 21 |
| abstract_inverted_index.challenges | 12 |
| abstract_inverted_index.equivalent | 212 |
| abstract_inverted_index.extraction | 55 |
| abstract_inverted_index.highlights | 221 |
| abstract_inverted_index.increasing | 139 |
| abstract_inverted_index.robustness | 214 |
| abstract_inverted_index.waveforms, | 39 |
| abstract_inverted_index.Integrating | 0 |
| abstract_inverted_index.Traditional | 47 |
| abstract_inverted_index.alternative | 108 |
| abstract_inverted_index.complicated | 53 |
| abstract_inverted_index.conditions. | 197 |
| abstract_inverted_index.demonstrate | 122 |
| abstract_inverted_index.disturbance | 114, 230, 253 |
| abstract_inverted_index.frequencies | 202 |
| abstract_inverted_index.performance | 207 |
| abstract_inverted_index.prospective | 83 |
| abstract_inverted_index.requirement | 101 |
| abstract_inverted_index.techniques, | 56 |
| abstract_inverted_index.disturbances | 31 |
| abstract_inverted_index.performance. | 119 |
| abstract_inverted_index.scalability. | 64 |
| abstract_inverted_index.convolutional | 70 |
| abstract_inverted_index.disturbances, | 174 |
| abstract_inverted_index.environments, | 136 |
| abstract_inverted_index.human-crafted | 103 |
| abstract_inverted_index.noise-related | 173 |
| abstract_inverted_index.optimization. | 242 |
| abstract_inverted_index.substantially | 11 |
| abstract_inverted_index.categorization | 80, 231 |
| abstract_inverted_index.classification | 51, 256 |
| abstract_inverted_index.irregularities | 34 |
| abstract_inverted_index.models’ | 213 |
| abstract_inverted_index.computationally | 60 |
| abstract_inverted_index.system’s | 20 |
| abstract_inverted_index.high-performance | 149 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.4300000071525574 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.95331492 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |