SimpleTrack: Rethinking and Improving the JDE Approach for Multi-Object Tracking Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2203.03985
Joint detection and embedding (JDE) based methods usually estimate bounding boxes and embedding features of objects with a single network in Multi-Object Tracking (MOT). In the tracking stage, JDE-based methods fuse the target motion information and appearance information by applying the same rule, which could fail when the target is briefly lost or blocked. To overcome this problem, we propose a new association matrix, the Embedding and Giou matrix, which combines embedding cosine distance and Giou distance of objects. To further improve the performance of data association, we develop a simple, effective tracker named SimpleTrack, which designs a bottom-up fusion method for Re-identity and proposes a new tracking strategy based on our EG matrix. The experimental results indicate that SimpleTrack has powerful data association capability, e.g., 61.6 HOTA and 76.3 IDF1 on MOT17. In addition, we apply the EG matrix to 5 different state-of-the-art JDE-based methods and achieve significant improvements in IDF1, HOTA and IDsw metrics, and increase the tracking speed of these methods by about 20%.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2203.03985
- https://arxiv.org/pdf/2203.03985
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4299354140
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4299354140Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2203.03985Digital Object Identifier
- Title
-
SimpleTrack: Rethinking and Improving the JDE Approach for Multi-Object TrackingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-03-08Full publication date if available
- Authors
-
Jiaxin Li, Yan Ding, Hua‐Liang WeiList of authors in order
- Landing page
-
https://arxiv.org/abs/2203.03985Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2203.03985Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2203.03985Direct OA link when available
- Concepts
-
Embedding, Fuse (electrical), Tracking (education), Computer science, Cosine similarity, Distance matrix, Object (grammar), Matrix (chemical analysis), Video tracking, Artificial intelligence, Computer vision, Bounding overwatch, Similarity (geometry), Pattern recognition (psychology), Algorithm, Image (mathematics), Engineering, Pedagogy, Materials science, Electrical engineering, Psychology, Composite materialTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4299354140 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2203.03985 |
| ids.doi | https://doi.org/10.48550/arxiv.2203.03985 |
| ids.openalex | https://openalex.org/W4299354140 |
| fwci | |
| type | preprint |
| title | SimpleTrack: Rethinking and Improving the JDE Approach for Multi-Object Tracking |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10331 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Video Surveillance and Tracking Methods |
| topics[1].id | https://openalex.org/T12389 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9650999903678894 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2202 |
| topics[1].subfield.display_name | Aerospace Engineering |
| topics[1].display_name | Infrared Target Detection Methodologies |
| topics[2].id | https://openalex.org/T11667 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9373000264167786 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Advanced Chemical Sensor Technologies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41608201 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7492501139640808 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q980509 |
| concepts[0].display_name | Embedding |
| concepts[1].id | https://openalex.org/C141353440 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7002518177032471 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q182221 |
| concepts[1].display_name | Fuse (electrical) |
| concepts[2].id | https://openalex.org/C2775936607 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6626011729240417 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q466845 |
| concepts[2].display_name | Tracking (education) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6362383365631104 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C2780762811 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5504799485206604 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1784941 |
| concepts[4].display_name | Cosine similarity |
| concepts[5].id | https://openalex.org/C111208986 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5428895354270935 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q901698 |
| concepts[5].display_name | Distance matrix |
| concepts[6].id | https://openalex.org/C2781238097 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5200029015541077 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[6].display_name | Object (grammar) |
| concepts[7].id | https://openalex.org/C106487976 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5193501710891724 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q685816 |
| concepts[7].display_name | Matrix (chemical analysis) |
| concepts[8].id | https://openalex.org/C202474056 |
| concepts[8].level | 3 |
| concepts[8].score | 0.5160372257232666 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1931635 |
| concepts[8].display_name | Video tracking |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4758826792240143 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C31972630 |
| concepts[10].level | 1 |
| concepts[10].score | 0.473671019077301 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[10].display_name | Computer vision |
| concepts[11].id | https://openalex.org/C63584917 |
| concepts[11].level | 2 |
| concepts[11].score | 0.43275129795074463 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q333286 |
| concepts[11].display_name | Bounding overwatch |
| concepts[12].id | https://openalex.org/C103278499 |
| concepts[12].level | 3 |
| concepts[12].score | 0.42331811785697937 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q254465 |
| concepts[12].display_name | Similarity (geometry) |
| concepts[13].id | https://openalex.org/C153180895 |
| concepts[13].level | 2 |
| concepts[13].score | 0.2927899956703186 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[13].display_name | Pattern recognition (psychology) |
| concepts[14].id | https://openalex.org/C11413529 |
| concepts[14].level | 1 |
| concepts[14].score | 0.2862294614315033 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[14].display_name | Algorithm |
| concepts[15].id | https://openalex.org/C115961682 |
| concepts[15].level | 2 |
| concepts[15].score | 0.2291054129600525 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[15].display_name | Image (mathematics) |
| concepts[16].id | https://openalex.org/C127413603 |
| concepts[16].level | 0 |
| concepts[16].score | 0.13590753078460693 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[16].display_name | Engineering |
| concepts[17].id | https://openalex.org/C19417346 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7922 |
| concepts[17].display_name | Pedagogy |
| concepts[18].id | https://openalex.org/C192562407 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[18].display_name | Materials science |
| concepts[19].id | https://openalex.org/C119599485 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[19].display_name | Electrical engineering |
| concepts[20].id | https://openalex.org/C15744967 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[20].display_name | Psychology |
| concepts[21].id | https://openalex.org/C159985019 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[21].display_name | Composite material |
| keywords[0].id | https://openalex.org/keywords/embedding |
| keywords[0].score | 0.7492501139640808 |
| keywords[0].display_name | Embedding |
| keywords[1].id | https://openalex.org/keywords/fuse |
| keywords[1].score | 0.7002518177032471 |
| keywords[1].display_name | Fuse (electrical) |
| keywords[2].id | https://openalex.org/keywords/tracking |
| keywords[2].score | 0.6626011729240417 |
| keywords[2].display_name | Tracking (education) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6362383365631104 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/cosine-similarity |
| keywords[4].score | 0.5504799485206604 |
| keywords[4].display_name | Cosine similarity |
| keywords[5].id | https://openalex.org/keywords/distance-matrix |
| keywords[5].score | 0.5428895354270935 |
| keywords[5].display_name | Distance matrix |
| keywords[6].id | https://openalex.org/keywords/object |
| keywords[6].score | 0.5200029015541077 |
| keywords[6].display_name | Object (grammar) |
| keywords[7].id | https://openalex.org/keywords/matrix |
| keywords[7].score | 0.5193501710891724 |
| keywords[7].display_name | Matrix (chemical analysis) |
| keywords[8].id | https://openalex.org/keywords/video-tracking |
| keywords[8].score | 0.5160372257232666 |
| keywords[8].display_name | Video tracking |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.4758826792240143 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/computer-vision |
| keywords[10].score | 0.473671019077301 |
| keywords[10].display_name | Computer vision |
| keywords[11].id | https://openalex.org/keywords/bounding-overwatch |
| keywords[11].score | 0.43275129795074463 |
| keywords[11].display_name | Bounding overwatch |
| keywords[12].id | https://openalex.org/keywords/similarity |
| keywords[12].score | 0.42331811785697937 |
| keywords[12].display_name | Similarity (geometry) |
| keywords[13].id | https://openalex.org/keywords/pattern-recognition |
| keywords[13].score | 0.2927899956703186 |
| keywords[13].display_name | Pattern recognition (psychology) |
| keywords[14].id | https://openalex.org/keywords/algorithm |
| keywords[14].score | 0.2862294614315033 |
| keywords[14].display_name | Algorithm |
| keywords[15].id | https://openalex.org/keywords/image |
| keywords[15].score | 0.2291054129600525 |
| keywords[15].display_name | Image (mathematics) |
| keywords[16].id | https://openalex.org/keywords/engineering |
| keywords[16].score | 0.13590753078460693 |
| keywords[16].display_name | Engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2203.03985 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2203.03985 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2203.03985 |
| locations[1].id | doi:10.48550/arxiv.2203.03985 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2203.03985 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100343403 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1416-1871 |
| authorships[0].author.display_name | Jiaxin Li |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Li, Jiaxin |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101487748 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1779-6837 |
| authorships[1].author.display_name | Yan Ding |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ding, Yan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5026841543 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4704-7346 |
| authorships[2].author.display_name | Hua‐Liang Wei |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Wei, Hualiang |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2203.03985 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | SimpleTrack: Rethinking and Improving the JDE Approach for Multi-Object Tracking |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10331 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Video Surveillance and Tracking Methods |
| related_works | https://openalex.org/W3000097931, https://openalex.org/W2354322770, https://openalex.org/W4237547500, https://openalex.org/W1570848052, https://openalex.org/W2373192430, https://openalex.org/W4239268388, https://openalex.org/W4243305035, https://openalex.org/W1537496349, https://openalex.org/W2379407973, https://openalex.org/W2350267540 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2203.03985 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2203.03985 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2203.03985 |
| primary_location.id | pmh:oai:arXiv.org:2203.03985 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2203.03985 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2203.03985 |
| publication_date | 2022-03-08 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.5 | 141 |
| abstract_inverted_index.a | 17, 60, 89, 97, 105 |
| abstract_inverted_index.EG | 112, 138 |
| abstract_inverted_index.In | 24, 133 |
| abstract_inverted_index.To | 54, 79 |
| abstract_inverted_index.by | 38, 164 |
| abstract_inverted_index.in | 20, 150 |
| abstract_inverted_index.is | 49 |
| abstract_inverted_index.of | 14, 77, 84, 161 |
| abstract_inverted_index.on | 110, 131 |
| abstract_inverted_index.or | 52 |
| abstract_inverted_index.to | 140 |
| abstract_inverted_index.we | 58, 87, 135 |
| abstract_inverted_index.The | 114 |
| abstract_inverted_index.and | 2, 11, 35, 66, 74, 103, 128, 146, 153, 156 |
| abstract_inverted_index.for | 101 |
| abstract_inverted_index.has | 120 |
| abstract_inverted_index.new | 61, 106 |
| abstract_inverted_index.our | 111 |
| abstract_inverted_index.the | 25, 31, 40, 47, 64, 82, 137, 158 |
| abstract_inverted_index.20%. | 166 |
| abstract_inverted_index.61.6 | 126 |
| abstract_inverted_index.76.3 | 129 |
| abstract_inverted_index.Giou | 67, 75 |
| abstract_inverted_index.HOTA | 127, 152 |
| abstract_inverted_index.IDF1 | 130 |
| abstract_inverted_index.IDsw | 154 |
| abstract_inverted_index.data | 85, 122 |
| abstract_inverted_index.fail | 45 |
| abstract_inverted_index.fuse | 30 |
| abstract_inverted_index.lost | 51 |
| abstract_inverted_index.same | 41 |
| abstract_inverted_index.that | 118 |
| abstract_inverted_index.this | 56 |
| abstract_inverted_index.when | 46 |
| abstract_inverted_index.with | 16 |
| abstract_inverted_index.(JDE) | 4 |
| abstract_inverted_index.IDF1, | 151 |
| abstract_inverted_index.Joint | 0 |
| abstract_inverted_index.about | 165 |
| abstract_inverted_index.apply | 136 |
| abstract_inverted_index.based | 5, 109 |
| abstract_inverted_index.boxes | 10 |
| abstract_inverted_index.could | 44 |
| abstract_inverted_index.e.g., | 125 |
| abstract_inverted_index.named | 93 |
| abstract_inverted_index.rule, | 42 |
| abstract_inverted_index.speed | 160 |
| abstract_inverted_index.these | 162 |
| abstract_inverted_index.which | 43, 69, 95 |
| abstract_inverted_index.(MOT). | 23 |
| abstract_inverted_index.MOT17. | 132 |
| abstract_inverted_index.cosine | 72 |
| abstract_inverted_index.fusion | 99 |
| abstract_inverted_index.matrix | 139 |
| abstract_inverted_index.method | 100 |
| abstract_inverted_index.motion | 33 |
| abstract_inverted_index.single | 18 |
| abstract_inverted_index.stage, | 27 |
| abstract_inverted_index.target | 32, 48 |
| abstract_inverted_index.achieve | 147 |
| abstract_inverted_index.briefly | 50 |
| abstract_inverted_index.designs | 96 |
| abstract_inverted_index.develop | 88 |
| abstract_inverted_index.further | 80 |
| abstract_inverted_index.improve | 81 |
| abstract_inverted_index.matrix, | 63, 68 |
| abstract_inverted_index.matrix. | 113 |
| abstract_inverted_index.methods | 6, 29, 145, 163 |
| abstract_inverted_index.network | 19 |
| abstract_inverted_index.objects | 15 |
| abstract_inverted_index.propose | 59 |
| abstract_inverted_index.results | 116 |
| abstract_inverted_index.simple, | 90 |
| abstract_inverted_index.tracker | 92 |
| abstract_inverted_index.usually | 7 |
| abstract_inverted_index.Tracking | 22 |
| abstract_inverted_index.applying | 39 |
| abstract_inverted_index.blocked. | 53 |
| abstract_inverted_index.bounding | 9 |
| abstract_inverted_index.combines | 70 |
| abstract_inverted_index.distance | 73, 76 |
| abstract_inverted_index.estimate | 8 |
| abstract_inverted_index.features | 13 |
| abstract_inverted_index.increase | 157 |
| abstract_inverted_index.indicate | 117 |
| abstract_inverted_index.metrics, | 155 |
| abstract_inverted_index.objects. | 78 |
| abstract_inverted_index.overcome | 55 |
| abstract_inverted_index.powerful | 121 |
| abstract_inverted_index.problem, | 57 |
| abstract_inverted_index.proposes | 104 |
| abstract_inverted_index.strategy | 108 |
| abstract_inverted_index.tracking | 26, 107, 159 |
| abstract_inverted_index.Embedding | 65 |
| abstract_inverted_index.JDE-based | 28, 144 |
| abstract_inverted_index.addition, | 134 |
| abstract_inverted_index.bottom-up | 98 |
| abstract_inverted_index.detection | 1 |
| abstract_inverted_index.different | 142 |
| abstract_inverted_index.effective | 91 |
| abstract_inverted_index.embedding | 3, 12, 71 |
| abstract_inverted_index.appearance | 36 |
| abstract_inverted_index.Re-identity | 102 |
| abstract_inverted_index.SimpleTrack | 119 |
| abstract_inverted_index.association | 62, 123 |
| abstract_inverted_index.capability, | 124 |
| abstract_inverted_index.information | 34, 37 |
| abstract_inverted_index.performance | 83 |
| abstract_inverted_index.significant | 148 |
| abstract_inverted_index.Multi-Object | 21 |
| abstract_inverted_index.SimpleTrack, | 94 |
| abstract_inverted_index.association, | 86 |
| abstract_inverted_index.experimental | 115 |
| abstract_inverted_index.improvements | 149 |
| abstract_inverted_index.state-of-the-art | 143 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |