Simulation-based assessment of model selection criteria during the application of benchmark dose method to quantal response data Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1186/s12976-020-00131-w
Background To employ the benchmark dose (BMD) method in toxicological risk assessment, it is critical to understand how the BMD lower bound for reference dose calculation is selected following statistical fitting procedures of multiple mathematical models. The purpose of this study was to compare the performances of various combinations of model exclusion and selection criteria for quantal response data. Methods Simulation-based evaluation of model exclusion and selection processes was conducted by comparing validity, reliability, and other model performance parameters. Three different empirical datasets for different chemical substances were analyzed for the assessment, each having different characteristics of the dose-response pattern (i.e. datasets with rich information in high or low response rates, or approximately linear dose-response patterns). Results The best performing criteria of model exclusion and selection were different across the different datasets. Model averaging over the three models with the lowest three AIC (Akaike information criteria) values (MA-3) did not produce the worst performance, and MA-3 without model exclusion produced the best results among the model averaging. Model exclusion including the use of the Kolmogorov-Smirnov test in advance of model selection did not necessarily improve the validity and reliability of the models. Conclusions If a uniform methodological suggestion for the guideline is required to choose the best performing model for exclusion and selection, our results indicate that using MA-3 is the recommended option whenever applicable.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1186/s12976-020-00131-w
- https://tbiomed.biomedcentral.com/track/pdf/10.1186/s12976-020-00131-w
- OA Status
- hybrid
- Cited By
- 4
- References
- 39
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3047601127
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3047601127Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1186/s12976-020-00131-wDigital Object Identifier
- Title
-
Simulation-based assessment of model selection criteria during the application of benchmark dose method to quantal response dataWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-08-04Full publication date if available
- Authors
-
Keita Yoshii, Hiroshi Nishiura, Kaoru Inoue, Takayuki Yamaguchi, Akihiko HiroseList of authors in order
- Landing page
-
https://doi.org/10.1186/s12976-020-00131-wPublisher landing page
- PDF URL
-
https://tbiomed.biomedcentral.com/track/pdf/10.1186/s12976-020-00131-wDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://tbiomed.biomedcentral.com/track/pdf/10.1186/s12976-020-00131-wDirect OA link when available
- Concepts
-
Akaike information criterion, Benchmark (surveying), Model selection, Selection (genetic algorithm), Reliability (semiconductor), Statistics, Computer science, Data mining, Mathematics, Econometrics, Machine learning, Quantum mechanics, Geodesy, Geography, Physics, Power (physics)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2021: 1, 2020: 1Per-year citation counts (last 5 years)
- References (count)
-
39Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3047601127 |
|---|---|
| doi | https://doi.org/10.1186/s12976-020-00131-w |
| ids.doi | https://doi.org/10.1186/s12976-020-00131-w |
| ids.mag | 3047601127 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/32753042 |
| ids.openalex | https://openalex.org/W3047601127 |
| fwci | 0.37601235 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D003198 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Computer Simulation |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D004305 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Dose-Response Relationship, Drug |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D015203 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Reproducibility of Results |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D018570 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Risk Assessment |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D019985 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Benchmarking |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D003198 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Computer Simulation |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D004305 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Dose-Response Relationship, Drug |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D015203 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Reproducibility of Results |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D018570 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Risk Assessment |
| type | article |
| title | Simulation-based assessment of model selection criteria during the application of benchmark dose method to quantal response data |
| awards[0].id | https://openalex.org/G2441320028 |
| awards[0].funder_id | https://openalex.org/F4320322555 |
| awards[0].display_name | |
| awards[0].funder_award_id | NA |
| awards[0].funder_display_name | Smoking Research Foundation |
| awards[1].id | https://openalex.org/G272849064 |
| awards[1].funder_id | https://openalex.org/F4320338075 |
| awards[1].display_name | |
| awards[1].funder_award_id | JPMJCR1413 |
| awards[1].funder_display_name | Core Research for Evolutional Science and Technology |
| awards[2].id | https://openalex.org/G3626557609 |
| awards[2].funder_id | https://openalex.org/F4320334764 |
| awards[2].display_name | |
| awards[2].funder_award_id | 17H04701, 17H05808, 18H04895, and 19H01074 |
| awards[2].funder_display_name | Japan Society for the Promotion of Science |
| awards[3].id | https://openalex.org/G6876440902 |
| awards[3].funder_id | https://openalex.org/F4320321474 |
| awards[3].display_name | |
| awards[3].funder_award_id | Cabinet Office Research for Assessment of the Effect of Food on Human Health, Japan (ID: 1907, PI: Hiroshi Nishiura) |
| awards[3].funder_display_name | Cabinet Office, Government of Japan |
| awards[4].id | https://openalex.org/G6808413247 |
| awards[4].funder_id | https://openalex.org/F4320311405 |
| awards[4].display_name | |
| awards[4].funder_award_id | JP18fk0108050 |
| awards[4].funder_display_name | Japan Agency for Medical Research and Development |
| biblio.issue | 1 |
| biblio.volume | 17 |
| biblio.last_page | 13 |
| biblio.first_page | 13 |
| topics[0].id | https://openalex.org/T11423 |
| topics[0].field.id | https://openalex.org/fields/11 |
| topics[0].field.display_name | Agricultural and Biological Sciences |
| topics[0].score | 0.9843999743461609 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1106 |
| topics[0].subfield.display_name | Food Science |
| topics[0].display_name | Pesticide Residue Analysis and Safety |
| topics[1].id | https://openalex.org/T10433 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9836000204086304 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1306 |
| topics[1].subfield.display_name | Cancer Research |
| topics[1].display_name | Carcinogens and Genotoxicity Assessment |
| topics[2].id | https://openalex.org/T11798 |
| topics[2].field.id | https://openalex.org/fields/18 |
| topics[2].field.display_name | Decision Sciences |
| topics[2].score | 0.9825000166893005 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1803 |
| topics[2].subfield.display_name | Management Science and Operations Research |
| topics[2].display_name | Optimal Experimental Design Methods |
| funders[0].id | https://openalex.org/F4320311405 |
| funders[0].ror | https://ror.org/004rtk039 |
| funders[0].display_name | Japan Agency for Medical Research and Development |
| funders[1].id | https://openalex.org/F4320321474 |
| funders[1].ror | https://ror.org/007f5s288 |
| funders[1].display_name | Cabinet Office, Government of Japan |
| funders[2].id | https://openalex.org/F4320322555 |
| funders[2].ror | https://ror.org/04q4hbm31 |
| funders[2].display_name | Smoking Research Foundation |
| funders[3].id | https://openalex.org/F4320334764 |
| funders[3].ror | https://ror.org/00hhkn466 |
| funders[3].display_name | Japan Society for the Promotion of Science |
| funders[4].id | https://openalex.org/F4320338075 |
| funders[4].ror | https://ror.org/00097mb19 |
| funders[4].display_name | Core Research for Evolutional Science and Technology |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C126674687 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9236365556716919 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1662573 |
| concepts[0].display_name | Akaike information criterion |
| concepts[1].id | https://openalex.org/C185798385 |
| concepts[1].level | 2 |
| concepts[1].score | 0.723645806312561 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[1].display_name | Benchmark (surveying) |
| concepts[2].id | https://openalex.org/C93959086 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6787005662918091 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q6888345 |
| concepts[2].display_name | Model selection |
| concepts[3].id | https://openalex.org/C81917197 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6773243546485901 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q628760 |
| concepts[3].display_name | Selection (genetic algorithm) |
| concepts[4].id | https://openalex.org/C43214815 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5895209312438965 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7310987 |
| concepts[4].display_name | Reliability (semiconductor) |
| concepts[5].id | https://openalex.org/C105795698 |
| concepts[5].level | 1 |
| concepts[5].score | 0.533110499382019 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[5].display_name | Statistics |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.5309606790542603 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C124101348 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4080185294151306 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[7].display_name | Data mining |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.35956066846847534 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C149782125 |
| concepts[9].level | 1 |
| concepts[9].score | 0.32531580328941345 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[9].display_name | Econometrics |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.31222623586654663 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C62520636 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[11].display_name | Quantum mechanics |
| concepts[12].id | https://openalex.org/C13280743 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[12].display_name | Geodesy |
| concepts[13].id | https://openalex.org/C205649164 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[13].display_name | Geography |
| concepts[14].id | https://openalex.org/C121332964 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[14].display_name | Physics |
| concepts[15].id | https://openalex.org/C163258240 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[15].display_name | Power (physics) |
| keywords[0].id | https://openalex.org/keywords/akaike-information-criterion |
| keywords[0].score | 0.9236365556716919 |
| keywords[0].display_name | Akaike information criterion |
| keywords[1].id | https://openalex.org/keywords/benchmark |
| keywords[1].score | 0.723645806312561 |
| keywords[1].display_name | Benchmark (surveying) |
| keywords[2].id | https://openalex.org/keywords/model-selection |
| keywords[2].score | 0.6787005662918091 |
| keywords[2].display_name | Model selection |
| keywords[3].id | https://openalex.org/keywords/selection |
| keywords[3].score | 0.6773243546485901 |
| keywords[3].display_name | Selection (genetic algorithm) |
| keywords[4].id | https://openalex.org/keywords/reliability |
| keywords[4].score | 0.5895209312438965 |
| keywords[4].display_name | Reliability (semiconductor) |
| keywords[5].id | https://openalex.org/keywords/statistics |
| keywords[5].score | 0.533110499382019 |
| keywords[5].display_name | Statistics |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.5309606790542603 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/data-mining |
| keywords[7].score | 0.4080185294151306 |
| keywords[7].display_name | Data mining |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.35956066846847534 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/econometrics |
| keywords[9].score | 0.32531580328941345 |
| keywords[9].display_name | Econometrics |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.31222623586654663 |
| keywords[10].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.1186/s12976-020-00131-w |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S65799822 |
| locations[0].source.issn | 1742-4682 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1742-4682 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Theoretical Biology and Medical Modelling |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://tbiomed.biomedcentral.com/track/pdf/10.1186/s12976-020-00131-w |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Theoretical Biology and Medical Modelling |
| locations[0].landing_page_url | https://doi.org/10.1186/s12976-020-00131-w |
| locations[1].id | pmid:32753042 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Theoretical biology & medical modelling |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/32753042 |
| locations[2].id | pmh:oai:doaj.org/article:6cbacd3f9978422cbf1ccedf3262e1d7 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Theoretical Biology and Medical Modelling, Vol 17, Iss 1, Pp 1-11 (2020) |
| locations[2].landing_page_url | https://doaj.org/article/6cbacd3f9978422cbf1ccedf3262e1d7 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:7477879 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Theor Biol Med Model |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/7477879 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5031890782 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Keita Yoshii |
| authorships[0].countries | JP |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I205349734 |
| authorships[0].affiliations[0].raw_affiliation_string | Graduate School of Medicine, Hokkaido University, Kita 15 Jo Nishi 7 Chome, Kita-ku, Sapporo-shi, Hokkaido, 060-8638, Japan |
| authorships[0].institutions[0].id | https://openalex.org/I205349734 |
| authorships[0].institutions[0].ror | https://ror.org/02e16g702 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I205349734 |
| authorships[0].institutions[0].country_code | JP |
| authorships[0].institutions[0].display_name | Hokkaido University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Keita Yoshii |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Graduate School of Medicine, Hokkaido University, Kita 15 Jo Nishi 7 Chome, Kita-ku, Sapporo-shi, Hokkaido, 060-8638, Japan |
| authorships[1].author.id | https://openalex.org/A5010630440 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0941-8537 |
| authorships[1].author.display_name | Hiroshi Nishiura |
| authorships[1].countries | JP |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I205349734 |
| authorships[1].affiliations[0].raw_affiliation_string | Graduate School of Medicine, Hokkaido University, Kita 15 Jo Nishi 7 Chome, Kita-ku, Sapporo-shi, Hokkaido, 060-8638, Japan |
| authorships[1].institutions[0].id | https://openalex.org/I205349734 |
| authorships[1].institutions[0].ror | https://ror.org/02e16g702 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I205349734 |
| authorships[1].institutions[0].country_code | JP |
| authorships[1].institutions[0].display_name | Hokkaido University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hiroshi Nishiura |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Graduate School of Medicine, Hokkaido University, Kita 15 Jo Nishi 7 Chome, Kita-ku, Sapporo-shi, Hokkaido, 060-8638, Japan |
| authorships[2].author.id | https://openalex.org/A5083010092 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3615-6192 |
| authorships[2].author.display_name | Kaoru Inoue |
| authorships[2].countries | JP |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210151964 |
| authorships[2].affiliations[0].raw_affiliation_string | Division of Risk Assessment, National Institute of Health Sciences, Kawasaki, Japan |
| authorships[2].institutions[0].id | https://openalex.org/I4210151964 |
| authorships[2].institutions[0].ror | https://ror.org/04s629c33 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I1333985979, https://openalex.org/I4210151964 |
| authorships[2].institutions[0].country_code | JP |
| authorships[2].institutions[0].display_name | National Institute of Health Sciences |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Kaoru Inoue |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Division of Risk Assessment, National Institute of Health Sciences, Kawasaki, Japan |
| authorships[3].author.id | https://openalex.org/A5104779069 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5176-6792 |
| authorships[3].author.display_name | Takayuki Yamaguchi |
| authorships[3].countries | JP |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I205349734 |
| authorships[3].affiliations[0].raw_affiliation_string | Graduate School of Medicine, Hokkaido University, Kita 15 Jo Nishi 7 Chome, Kita-ku, Sapporo-shi, Hokkaido, 060-8638, Japan |
| authorships[3].institutions[0].id | https://openalex.org/I205349734 |
| authorships[3].institutions[0].ror | https://ror.org/02e16g702 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I205349734 |
| authorships[3].institutions[0].country_code | JP |
| authorships[3].institutions[0].display_name | Hokkaido University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Takayuki Yamaguchi |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Graduate School of Medicine, Hokkaido University, Kita 15 Jo Nishi 7 Chome, Kita-ku, Sapporo-shi, Hokkaido, 060-8638, Japan |
| authorships[4].author.id | https://openalex.org/A5008576503 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1703-4883 |
| authorships[4].author.display_name | Akihiko Hirose |
| authorships[4].countries | JP |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210151964 |
| authorships[4].affiliations[0].raw_affiliation_string | Division of Risk Assessment, National Institute of Health Sciences, Kawasaki, Japan |
| authorships[4].institutions[0].id | https://openalex.org/I4210151964 |
| authorships[4].institutions[0].ror | https://ror.org/04s629c33 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I1333985979, https://openalex.org/I4210151964 |
| authorships[4].institutions[0].country_code | JP |
| authorships[4].institutions[0].display_name | National Institute of Health Sciences |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Akihiko Hirose |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Division of Risk Assessment, National Institute of Health Sciences, Kawasaki, Japan |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://tbiomed.biomedcentral.com/track/pdf/10.1186/s12976-020-00131-w |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Simulation-based assessment of model selection criteria during the application of benchmark dose method to quantal response data |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11423 |
| primary_topic.field.id | https://openalex.org/fields/11 |
| primary_topic.field.display_name | Agricultural and Biological Sciences |
| primary_topic.score | 0.9843999743461609 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1106 |
| primary_topic.subfield.display_name | Food Science |
| primary_topic.display_name | Pesticide Residue Analysis and Safety |
| related_works | https://openalex.org/W4283580396, https://openalex.org/W2166954039, https://openalex.org/W1982789243, https://openalex.org/W2056833274, https://openalex.org/W2114625140, https://openalex.org/W2006209093, https://openalex.org/W2783425804, https://openalex.org/W158814215, https://openalex.org/W2033907215, https://openalex.org/W2493515942 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2021 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2020 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1186/s12976-020-00131-w |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S65799822 |
| best_oa_location.source.issn | 1742-4682 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1742-4682 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Theoretical Biology and Medical Modelling |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://tbiomed.biomedcentral.com/track/pdf/10.1186/s12976-020-00131-w |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Theoretical Biology and Medical Modelling |
| best_oa_location.landing_page_url | https://doi.org/10.1186/s12976-020-00131-w |
| primary_location.id | doi:10.1186/s12976-020-00131-w |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S65799822 |
| primary_location.source.issn | 1742-4682 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1742-4682 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Theoretical Biology and Medical Modelling |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://tbiomed.biomedcentral.com/track/pdf/10.1186/s12976-020-00131-w |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Theoretical Biology and Medical Modelling |
| primary_location.landing_page_url | https://doi.org/10.1186/s12976-020-00131-w |
| publication_date | 2020-08-04 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W1574297438, https://openalex.org/W2124911239, https://openalex.org/W2067252236, https://openalex.org/W2132873473, https://openalex.org/W2061928799, https://openalex.org/W2092558216, https://openalex.org/W2121482529, https://openalex.org/W2045149257, https://openalex.org/W1970033529, https://openalex.org/W2413672378, https://openalex.org/W2159154228, https://openalex.org/W1603903339, https://openalex.org/W2152098946, https://openalex.org/W2158196600, https://openalex.org/W2078502317, https://openalex.org/W2006441728, https://openalex.org/W4230211598, https://openalex.org/W2138672858, https://openalex.org/W4300759571, https://openalex.org/W1849426187, https://openalex.org/W2022796567, https://openalex.org/W2065186229, https://openalex.org/W2058316460, https://openalex.org/W1974876721, https://openalex.org/W4255375128, https://openalex.org/W1972571116, https://openalex.org/W4236825506, https://openalex.org/W2018456296, https://openalex.org/W2021074697, https://openalex.org/W2945224495, https://openalex.org/W1947060681, https://openalex.org/W1566845355, https://openalex.org/W2170532008, https://openalex.org/W1974356961, https://openalex.org/W2580286573, https://openalex.org/W2166481425, https://openalex.org/W2046600124, https://openalex.org/W2094262185, https://openalex.org/W2970037344 |
| referenced_works_count | 39 |
| abstract_inverted_index.a | 195 |
| abstract_inverted_index.If | 194 |
| abstract_inverted_index.To | 2 |
| abstract_inverted_index.by | 71 |
| abstract_inverted_index.in | 9, 106, 177 |
| abstract_inverted_index.is | 14, 27, 202, 220 |
| abstract_inverted_index.it | 13 |
| abstract_inverted_index.of | 33, 39, 47, 50, 63, 97, 122, 173, 179, 190 |
| abstract_inverted_index.or | 108, 112 |
| abstract_inverted_index.to | 16, 43, 204 |
| abstract_inverted_index.AIC | 143 |
| abstract_inverted_index.BMD | 20 |
| abstract_inverted_index.The | 37, 118 |
| abstract_inverted_index.and | 53, 66, 75, 125, 155, 188, 212 |
| abstract_inverted_index.did | 149, 182 |
| abstract_inverted_index.for | 23, 56, 84, 90, 199, 210 |
| abstract_inverted_index.how | 18 |
| abstract_inverted_index.low | 109 |
| abstract_inverted_index.not | 150, 183 |
| abstract_inverted_index.our | 214 |
| abstract_inverted_index.the | 4, 19, 45, 91, 98, 130, 136, 140, 152, 161, 165, 171, 174, 186, 191, 200, 206, 221 |
| abstract_inverted_index.use | 172 |
| abstract_inverted_index.was | 42, 69 |
| abstract_inverted_index.MA-3 | 156, 219 |
| abstract_inverted_index.best | 119, 162, 207 |
| abstract_inverted_index.dose | 6, 25 |
| abstract_inverted_index.each | 93 |
| abstract_inverted_index.high | 107 |
| abstract_inverted_index.over | 135 |
| abstract_inverted_index.rich | 104 |
| abstract_inverted_index.risk | 11 |
| abstract_inverted_index.test | 176 |
| abstract_inverted_index.that | 217 |
| abstract_inverted_index.this | 40 |
| abstract_inverted_index.were | 88, 127 |
| abstract_inverted_index.with | 103, 139 |
| abstract_inverted_index.(BMD) | 7 |
| abstract_inverted_index.(i.e. | 101 |
| abstract_inverted_index.Model | 133, 168 |
| abstract_inverted_index.Three | 80 |
| abstract_inverted_index.among | 164 |
| abstract_inverted_index.bound | 22 |
| abstract_inverted_index.data. | 59 |
| abstract_inverted_index.lower | 21 |
| abstract_inverted_index.model | 51, 64, 77, 123, 158, 166, 180, 209 |
| abstract_inverted_index.other | 76 |
| abstract_inverted_index.study | 41 |
| abstract_inverted_index.three | 137, 142 |
| abstract_inverted_index.using | 218 |
| abstract_inverted_index.worst | 153 |
| abstract_inverted_index.(MA-3) | 148 |
| abstract_inverted_index.across | 129 |
| abstract_inverted_index.choose | 205 |
| abstract_inverted_index.employ | 3 |
| abstract_inverted_index.having | 94 |
| abstract_inverted_index.linear | 114 |
| abstract_inverted_index.lowest | 141 |
| abstract_inverted_index.method | 8 |
| abstract_inverted_index.models | 138 |
| abstract_inverted_index.option | 223 |
| abstract_inverted_index.rates, | 111 |
| abstract_inverted_index.values | 147 |
| abstract_inverted_index.(Akaike | 144 |
| abstract_inverted_index.Methods | 60 |
| abstract_inverted_index.Results | 117 |
| abstract_inverted_index.advance | 178 |
| abstract_inverted_index.compare | 44 |
| abstract_inverted_index.fitting | 31 |
| abstract_inverted_index.improve | 185 |
| abstract_inverted_index.models. | 36, 192 |
| abstract_inverted_index.pattern | 100 |
| abstract_inverted_index.produce | 151 |
| abstract_inverted_index.purpose | 38 |
| abstract_inverted_index.quantal | 57 |
| abstract_inverted_index.results | 163, 215 |
| abstract_inverted_index.uniform | 196 |
| abstract_inverted_index.various | 48 |
| abstract_inverted_index.without | 157 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.analyzed | 89 |
| abstract_inverted_index.chemical | 86 |
| abstract_inverted_index.criteria | 55, 121 |
| abstract_inverted_index.critical | 15 |
| abstract_inverted_index.datasets | 83, 102 |
| abstract_inverted_index.indicate | 216 |
| abstract_inverted_index.multiple | 34 |
| abstract_inverted_index.produced | 160 |
| abstract_inverted_index.required | 203 |
| abstract_inverted_index.response | 58, 110 |
| abstract_inverted_index.selected | 28 |
| abstract_inverted_index.validity | 187 |
| abstract_inverted_index.whenever | 224 |
| abstract_inverted_index.averaging | 134 |
| abstract_inverted_index.benchmark | 5 |
| abstract_inverted_index.comparing | 72 |
| abstract_inverted_index.conducted | 70 |
| abstract_inverted_index.criteria) | 146 |
| abstract_inverted_index.datasets. | 132 |
| abstract_inverted_index.different | 81, 85, 95, 128, 131 |
| abstract_inverted_index.empirical | 82 |
| abstract_inverted_index.exclusion | 52, 65, 124, 159, 169, 211 |
| abstract_inverted_index.following | 29 |
| abstract_inverted_index.guideline | 201 |
| abstract_inverted_index.including | 170 |
| abstract_inverted_index.processes | 68 |
| abstract_inverted_index.reference | 24 |
| abstract_inverted_index.selection | 54, 67, 126, 181 |
| abstract_inverted_index.validity, | 73 |
| abstract_inverted_index.Background | 1 |
| abstract_inverted_index.averaging. | 167 |
| abstract_inverted_index.evaluation | 62 |
| abstract_inverted_index.patterns). | 116 |
| abstract_inverted_index.performing | 120, 208 |
| abstract_inverted_index.procedures | 32 |
| abstract_inverted_index.selection, | 213 |
| abstract_inverted_index.substances | 87 |
| abstract_inverted_index.suggestion | 198 |
| abstract_inverted_index.understand | 17 |
| abstract_inverted_index.Conclusions | 193 |
| abstract_inverted_index.applicable. | 225 |
| abstract_inverted_index.assessment, | 12, 92 |
| abstract_inverted_index.calculation | 26 |
| abstract_inverted_index.information | 105, 145 |
| abstract_inverted_index.necessarily | 184 |
| abstract_inverted_index.parameters. | 79 |
| abstract_inverted_index.performance | 78 |
| abstract_inverted_index.recommended | 222 |
| abstract_inverted_index.reliability | 189 |
| abstract_inverted_index.statistical | 30 |
| abstract_inverted_index.combinations | 49 |
| abstract_inverted_index.mathematical | 35 |
| abstract_inverted_index.performance, | 154 |
| abstract_inverted_index.performances | 46 |
| abstract_inverted_index.reliability, | 74 |
| abstract_inverted_index.approximately | 113 |
| abstract_inverted_index.dose-response | 99, 115 |
| abstract_inverted_index.toxicological | 10 |
| abstract_inverted_index.methodological | 197 |
| abstract_inverted_index.characteristics | 96 |
| abstract_inverted_index.Simulation-based | 61 |
| abstract_inverted_index.Kolmogorov-Smirnov | 175 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.7799999713897705 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.63698184 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |