Simulation-driven dual-band Graphene–Silver terahertz metasurface biosensor integrated with machine learning for mode-resolved hemoglobin detection Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1016/j.sintl.2025.100357
Accurate hemoglobin measurement is essential for diagnosing hematological disorders and monitoring cardiovascular health. This study introduces a terahertz metasurface biosensor combined with machine learning algorithms for rapid and non-invasive hemoglobin detection in clinical settings. The metasurface exhibits dual-band resonance in 2 THz regions, achieving a sensitivity of 450 GHz/RIU within a refractive index range of 1.34–1.43 RIU, with corresponding frequency shifts of 40 GHz and 30 GHz. Machine learning models, including Random Forest, Support Vector Machines, and Neural Networks, enhance the sensor's analytical capability. Across four clinical categories—normal, mild anemia, moderate anemia, and severe anemia—the models attain 96.5 percent classification accuracy, with recall and precision scores above 0.94. Ensemble learning reduces the root mean square error to 0.28 g/dL, while denoising methods increase the signal-to-noise ratio by 16.3 dB. The biosensor supports real-time analysis, requires minimal sample volume, and eliminates complex preparation, making it suitable for continuous hemoglobin monitoring and cardiovascular health management.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.sintl.2025.100357
- OA Status
- gold
- References
- 23
- OpenAlex ID
- https://openalex.org/W4415902665
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415902665Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.sintl.2025.100357Digital Object Identifier
- Title
-
Simulation-driven dual-band Graphene–Silver terahertz metasurface biosensor integrated with machine learning for mode-resolved hemoglobin detectionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-05Full publication date if available
- Authors
-
Gunasekaran Thangavel, V. Joseph Michael Jerard, K. Manivannan, A. Sasikumar, V. Selvaraj, Manjunathan AlagarsamyList of authors in order
- Landing page
-
https://doi.org/10.1016/j.sintl.2025.100357Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.sintl.2025.100357Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
23Number of works referenced by this work
Full payload
| id | https://openalex.org/W4415902665 |
|---|---|
| doi | https://doi.org/10.1016/j.sintl.2025.100357 |
| ids.doi | https://doi.org/10.1016/j.sintl.2025.100357 |
| ids.openalex | https://openalex.org/W4415902665 |
| fwci | |
| type | article |
| title | Simulation-driven dual-band Graphene–Silver terahertz metasurface biosensor integrated with machine learning for mode-resolved hemoglobin detection |
| biblio.issue | |
| biblio.volume | 7 |
| biblio.last_page | 100357 |
| biblio.first_page | 100357 |
| is_xpac | False |
| apc_list.value | 800 |
| apc_list.currency | USD |
| apc_list.value_usd | 800 |
| apc_paid.value | 800 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 800 |
| language | en |
| locations[0].id | doi:10.1016/j.sintl.2025.100357 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210227652 |
| locations[0].source.issn | 2666-3511 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2666-3511 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors International |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors International |
| locations[0].landing_page_url | https://doi.org/10.1016/j.sintl.2025.100357 |
| locations[1].id | pmh:oai:doaj.org/article:9b4af386b9514ec2b5384a1732847e2d |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Sensors International, Vol 7, Iss , Pp 100357- (2026) |
| locations[1].landing_page_url | https://doaj.org/article/9b4af386b9514ec2b5384a1732847e2d |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5004783854 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8653-7268 |
| authorships[0].author.display_name | Gunasekaran Thangavel |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Gunasekaran Thangavel |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5075400370 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | V. Joseph Michael Jerard |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | V. Joseph Michael Jerard |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5065029547 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6080-7581 |
| authorships[2].author.display_name | K. Manivannan |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | K. Manivannan |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5109351855 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | A. Sasikumar |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | A.N. Sasikumar |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5052001990 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6557-4986 |
| authorships[4].author.display_name | V. Selvaraj |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Vairaprakash Selvaraj |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5047706793 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Manjunathan Alagarsamy |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Manjunathan Alagarsamy |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.sintl.2025.100357 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-05T00:00:00 |
| display_name | Simulation-driven dual-band Graphene–Silver terahertz metasurface biosensor integrated with machine learning for mode-resolved hemoglobin detection |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-11T00:21:10.989143 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.sintl.2025.100357 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210227652 |
| best_oa_location.source.issn | 2666-3511 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2666-3511 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors International |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors International |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.sintl.2025.100357 |
| primary_location.id | doi:10.1016/j.sintl.2025.100357 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210227652 |
| primary_location.source.issn | 2666-3511 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2666-3511 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors International |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors International |
| primary_location.landing_page_url | https://doi.org/10.1016/j.sintl.2025.100357 |
| publication_date | 2025-11-05 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4200136933, https://openalex.org/W3162296721, https://openalex.org/W4388921988, https://openalex.org/W4387849389, https://openalex.org/W2136098489, https://openalex.org/W2058397330, https://openalex.org/W4392199370, https://openalex.org/W4281754546, https://openalex.org/W4379742414, https://openalex.org/W3118995878, https://openalex.org/W4385418797, https://openalex.org/W7091305432, https://openalex.org/W4296312433, https://openalex.org/W3016292053, https://openalex.org/W4411965905, https://openalex.org/W2058007140, https://openalex.org/W4387881630, https://openalex.org/W4412497108, https://openalex.org/W4400623544, https://openalex.org/W4380047049, https://openalex.org/W4406331383, https://openalex.org/W4408083878, https://openalex.org/W4390840331 |
| referenced_works_count | 23 |
| abstract_inverted_index.2 | 40 |
| abstract_inverted_index.a | 16, 44, 50 |
| abstract_inverted_index.30 | 65 |
| abstract_inverted_index.40 | 62 |
| abstract_inverted_index.by | 126 |
| abstract_inverted_index.in | 31, 39 |
| abstract_inverted_index.is | 3 |
| abstract_inverted_index.it | 143 |
| abstract_inverted_index.of | 46, 54, 61 |
| abstract_inverted_index.to | 116 |
| abstract_inverted_index.450 | 47 |
| abstract_inverted_index.GHz | 63 |
| abstract_inverted_index.THz | 41 |
| abstract_inverted_index.The | 34, 129 |
| abstract_inverted_index.and | 9, 27, 64, 76, 92, 103, 138, 149 |
| abstract_inverted_index.dB. | 128 |
| abstract_inverted_index.for | 5, 25, 145 |
| abstract_inverted_index.the | 80, 111, 123 |
| abstract_inverted_index.0.28 | 117 |
| abstract_inverted_index.16.3 | 127 |
| abstract_inverted_index.96.5 | 97 |
| abstract_inverted_index.GHz. | 66 |
| abstract_inverted_index.RIU, | 56 |
| abstract_inverted_index.This | 13 |
| abstract_inverted_index.four | 85 |
| abstract_inverted_index.mean | 113 |
| abstract_inverted_index.mild | 88 |
| abstract_inverted_index.root | 112 |
| abstract_inverted_index.with | 21, 57, 101 |
| abstract_inverted_index.0.94. | 107 |
| abstract_inverted_index.above | 106 |
| abstract_inverted_index.error | 115 |
| abstract_inverted_index.g/dL, | 118 |
| abstract_inverted_index.index | 52 |
| abstract_inverted_index.range | 53 |
| abstract_inverted_index.rapid | 26 |
| abstract_inverted_index.ratio | 125 |
| abstract_inverted_index.study | 14 |
| abstract_inverted_index.while | 119 |
| abstract_inverted_index.Across | 84 |
| abstract_inverted_index.Neural | 77 |
| abstract_inverted_index.Random | 71 |
| abstract_inverted_index.Vector | 74 |
| abstract_inverted_index.attain | 96 |
| abstract_inverted_index.health | 151 |
| abstract_inverted_index.making | 142 |
| abstract_inverted_index.models | 95 |
| abstract_inverted_index.recall | 102 |
| abstract_inverted_index.sample | 136 |
| abstract_inverted_index.scores | 105 |
| abstract_inverted_index.severe | 93 |
| abstract_inverted_index.shifts | 60 |
| abstract_inverted_index.square | 114 |
| abstract_inverted_index.within | 49 |
| abstract_inverted_index.Forest, | 72 |
| abstract_inverted_index.GHz/RIU | 48 |
| abstract_inverted_index.Machine | 67 |
| abstract_inverted_index.Support | 73 |
| abstract_inverted_index.anemia, | 89, 91 |
| abstract_inverted_index.complex | 140 |
| abstract_inverted_index.enhance | 79 |
| abstract_inverted_index.health. | 12 |
| abstract_inverted_index.machine | 22 |
| abstract_inverted_index.methods | 121 |
| abstract_inverted_index.minimal | 135 |
| abstract_inverted_index.models, | 69 |
| abstract_inverted_index.percent | 98 |
| abstract_inverted_index.reduces | 110 |
| abstract_inverted_index.volume, | 137 |
| abstract_inverted_index.Accurate | 0 |
| abstract_inverted_index.Ensemble | 108 |
| abstract_inverted_index.clinical | 32, 86 |
| abstract_inverted_index.combined | 20 |
| abstract_inverted_index.exhibits | 36 |
| abstract_inverted_index.increase | 122 |
| abstract_inverted_index.learning | 23, 68, 109 |
| abstract_inverted_index.moderate | 90 |
| abstract_inverted_index.regions, | 42 |
| abstract_inverted_index.requires | 134 |
| abstract_inverted_index.sensor's | 81 |
| abstract_inverted_index.suitable | 144 |
| abstract_inverted_index.supports | 131 |
| abstract_inverted_index.Machines, | 75 |
| abstract_inverted_index.Networks, | 78 |
| abstract_inverted_index.accuracy, | 100 |
| abstract_inverted_index.achieving | 43 |
| abstract_inverted_index.analysis, | 133 |
| abstract_inverted_index.biosensor | 19, 130 |
| abstract_inverted_index.denoising | 120 |
| abstract_inverted_index.detection | 30 |
| abstract_inverted_index.disorders | 8 |
| abstract_inverted_index.dual-band | 37 |
| abstract_inverted_index.essential | 4 |
| abstract_inverted_index.frequency | 59 |
| abstract_inverted_index.including | 70 |
| abstract_inverted_index.precision | 104 |
| abstract_inverted_index.real-time | 132 |
| abstract_inverted_index.resonance | 38 |
| abstract_inverted_index.settings. | 33 |
| abstract_inverted_index.terahertz | 17 |
| abstract_inverted_index.algorithms | 24 |
| abstract_inverted_index.analytical | 82 |
| abstract_inverted_index.continuous | 146 |
| abstract_inverted_index.diagnosing | 6 |
| abstract_inverted_index.eliminates | 139 |
| abstract_inverted_index.hemoglobin | 1, 29, 147 |
| abstract_inverted_index.introduces | 15 |
| abstract_inverted_index.monitoring | 10, 148 |
| abstract_inverted_index.refractive | 51 |
| abstract_inverted_index.1.34–1.43 | 55 |
| abstract_inverted_index.capability. | 83 |
| abstract_inverted_index.management. | 152 |
| abstract_inverted_index.measurement | 2 |
| abstract_inverted_index.metasurface | 18, 35 |
| abstract_inverted_index.sensitivity | 45 |
| abstract_inverted_index.anemia—the | 94 |
| abstract_inverted_index.non-invasive | 28 |
| abstract_inverted_index.preparation, | 141 |
| abstract_inverted_index.corresponding | 58 |
| abstract_inverted_index.hematological | 7 |
| abstract_inverted_index.cardiovascular | 11, 150 |
| abstract_inverted_index.classification | 99 |
| abstract_inverted_index.signal-to-noise | 124 |
| abstract_inverted_index.categories—normal, | 87 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |