Single-Cell Proteomics Using Mass Spectrometry. Article Swipe
Single-cell proteomics (SCP) is transforming our understanding of biological complexity by shifting from bulk proteomics, where signals are averaged over thousands of cells, to the proteome analysis of individual cells. This granular perspective reveals distinct cell states, population heterogeneity, and the underpinnings of disease pathogenesis that bulk approaches may obscure. However, SCP demands exceptional sensitivity, precise cell handling, and robust data processing to overcome the inherent challenges of analyzing picogram-level protein samples without amplification. Recent innovations in sample preparation, separations, data acquisition strategies, and specialized mass spectrometry instrumentation have substantially improved proteome coverage and throughput. Approaches that integrate complementary omics, streamline multi-step sample processing, and automate workflows through microfluidics and specialized platforms promise to further push SCP boundaries. Advances in computational methods, especially for data normalization and imputation, address the pervasive issue of missing values, enabling more reliable downstream biological interpretations. Despite these strides, higher throughput, reproducibility, and consensus best practices remain pressing needs in the field. This mini review summarizes the latest progress in SCP technology and software solutions, highlighting how closer integration of analytical, computational, and experimental strategies will facilitate deeper and broader coverage of single-cell proteomes.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://pubmed.ncbi.nlm.nih.gov/40034135
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407759041
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407759041Canonical identifier for this work in OpenAlex
- Title
-
Single-Cell Proteomics Using Mass Spectrometry.Work title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-29Full publication date if available
- Authors
-
Amanda Momenzadeh, Jesse G. MeyerList of authors in order
- Landing page
-
https://pubmed.ncbi.nlm.nih.gov/40034135Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2502.11982Direct OA link when available
- Concepts
-
Proteomics, Mass spectrometry, Computer science, Chemistry, Chromatography, Computational biology, Biology, Biochemistry, GeneTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407759041 |
|---|---|
| doi | |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40034135 |
| ids.openalex | https://openalex.org/W4407759041 |
| fwci | 0.0 |
| type | article |
| title | Single-Cell Proteomics Using Mass Spectrometry. |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10519 |
| topics[0].field.id | https://openalex.org/fields/16 |
| topics[0].field.display_name | Chemistry |
| topics[0].score | 0.885699987411499 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1607 |
| topics[0].subfield.display_name | Spectroscopy |
| topics[0].display_name | Advanced Proteomics Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C46111723 |
| concepts[0].level | 3 |
| concepts[0].score | 0.731486976146698 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q471857 |
| concepts[0].display_name | Proteomics |
| concepts[1].id | https://openalex.org/C162356407 |
| concepts[1].level | 2 |
| concepts[1].score | 0.730728268623352 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q180809 |
| concepts[1].display_name | Mass spectrometry |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.3853640556335449 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C185592680 |
| concepts[3].level | 0 |
| concepts[3].score | 0.37822961807250977 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[3].display_name | Chemistry |
| concepts[4].id | https://openalex.org/C43617362 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3555290400981903 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q170050 |
| concepts[4].display_name | Chromatography |
| concepts[5].id | https://openalex.org/C70721500 |
| concepts[5].level | 1 |
| concepts[5].score | 0.326850950717926 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q177005 |
| concepts[5].display_name | Computational biology |
| concepts[6].id | https://openalex.org/C86803240 |
| concepts[6].level | 0 |
| concepts[6].score | 0.12759879231452942 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[6].display_name | Biology |
| concepts[7].id | https://openalex.org/C55493867 |
| concepts[7].level | 1 |
| concepts[7].score | 0.08484849333763123 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[7].display_name | Biochemistry |
| concepts[8].id | https://openalex.org/C104317684 |
| concepts[8].level | 2 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[8].display_name | Gene |
| keywords[0].id | https://openalex.org/keywords/proteomics |
| keywords[0].score | 0.731486976146698 |
| keywords[0].display_name | Proteomics |
| keywords[1].id | https://openalex.org/keywords/mass-spectrometry |
| keywords[1].score | 0.730728268623352 |
| keywords[1].display_name | Mass spectrometry |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.3853640556335449 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/chemistry |
| keywords[3].score | 0.37822961807250977 |
| keywords[3].display_name | Chemistry |
| keywords[4].id | https://openalex.org/keywords/chromatography |
| keywords[4].score | 0.3555290400981903 |
| keywords[4].display_name | Chromatography |
| keywords[5].id | https://openalex.org/keywords/computational-biology |
| keywords[5].score | 0.326850950717926 |
| keywords[5].display_name | Computational biology |
| keywords[6].id | https://openalex.org/keywords/biology |
| keywords[6].score | 0.12759879231452942 |
| keywords[6].display_name | Biology |
| keywords[7].id | https://openalex.org/keywords/biochemistry |
| keywords[7].score | 0.08484849333763123 |
| keywords[7].display_name | Biochemistry |
| language | en |
| locations[0].id | pmid:40034135 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S4306525036 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | PubMed |
| locations[0].source.host_organization | https://openalex.org/I1299303238 |
| locations[0].source.host_organization_name | National Institutes of Health |
| locations[0].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | ArXiv |
| locations[0].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40034135 |
| locations[1].id | pmh:oai:arXiv.org:2502.11982 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/2502.11982 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2502.11982 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:11875278 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | ArXiv |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11875278 |
| indexed_in | arxiv, pubmed |
| authorships[0].author.id | https://openalex.org/A5086693051 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8614-0690 |
| authorships[0].author.display_name | Amanda Momenzadeh |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1282927834, https://openalex.org/I4210141674 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computational Biomedicine, Smidt Heart Institute, Board of Governors Innovation Center, Advanced Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA. |
| authorships[0].institutions[0].id | https://openalex.org/I1282927834 |
| authorships[0].institutions[0].ror | https://ror.org/02pammg90 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I1282927834 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Cedars-Sinai Medical Center |
| authorships[0].institutions[1].id | https://openalex.org/I4210141674 |
| authorships[0].institutions[1].ror | https://ror.org/041vn2102 |
| authorships[0].institutions[1].type | healthcare |
| authorships[0].institutions[1].lineage | https://openalex.org/I1282927834, https://openalex.org/I4210141674 |
| authorships[0].institutions[1].country_code | US |
| authorships[0].institutions[1].display_name | Cedars-Sinai Smidt Heart Institute |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Amanda Momenzadeh |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computational Biomedicine, Smidt Heart Institute, Board of Governors Innovation Center, Advanced Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA. |
| authorships[1].author.id | https://openalex.org/A5067432674 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2753-3926 |
| authorships[1].author.display_name | Jesse G. Meyer |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1282927834, https://openalex.org/I4210141674 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computational Biomedicine, Smidt Heart Institute, Board of Governors Innovation Center, Advanced Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA. Electronic address: [email protected]. |
| authorships[1].institutions[0].id | https://openalex.org/I1282927834 |
| authorships[1].institutions[0].ror | https://ror.org/02pammg90 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I1282927834 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Cedars-Sinai Medical Center |
| authorships[1].institutions[1].id | https://openalex.org/I4210141674 |
| authorships[1].institutions[1].ror | https://ror.org/041vn2102 |
| authorships[1].institutions[1].type | healthcare |
| authorships[1].institutions[1].lineage | https://openalex.org/I1282927834, https://openalex.org/I4210141674 |
| authorships[1].institutions[1].country_code | US |
| authorships[1].institutions[1].display_name | Cedars-Sinai Smidt Heart Institute |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Jesse G Meyer |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computational Biomedicine, Smidt Heart Institute, Board of Governors Innovation Center, Advanced Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA. Electronic address: [email protected]. |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2502.11982 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Single-Cell Proteomics Using Mass Spectrometry. |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T04:12:42.849631 |
| primary_topic.id | https://openalex.org/T10519 |
| primary_topic.field.id | https://openalex.org/fields/16 |
| primary_topic.field.display_name | Chemistry |
| primary_topic.score | 0.885699987411499 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1607 |
| primary_topic.subfield.display_name | Spectroscopy |
| primary_topic.display_name | Advanced Proteomics Techniques and Applications |
| related_works | https://openalex.org/W4387497383, https://openalex.org/W2948807893, https://openalex.org/W2899084033, https://openalex.org/W2778153218, https://openalex.org/W2748952813, https://openalex.org/W1531601525, https://openalex.org/W4391375266, https://openalex.org/W2078814861, https://openalex.org/W2527526854, https://openalex.org/W2088324202 |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:arXiv.org:2502.11982 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2502.11982 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2502.11982 |
| primary_location.id | pmid:40034135 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S4306525036 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | PubMed |
| primary_location.source.host_organization | https://openalex.org/I1299303238 |
| primary_location.source.host_organization_name | National Institutes of Health |
| primary_location.source.host_organization_lineage | https://openalex.org/I1299303238 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | ArXiv |
| primary_location.landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40034135 |
| publication_date | 2025-03-29 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.by | 10 |
| abstract_inverted_index.in | 76, 119, 154, 164 |
| abstract_inverted_index.is | 3 |
| abstract_inverted_index.of | 7, 21, 27, 42, 67, 132, 174, 186 |
| abstract_inverted_index.to | 23, 62, 113 |
| abstract_inverted_index.SCP | 51, 116, 165 |
| abstract_inverted_index.and | 39, 58, 83, 93, 104, 109, 126, 147, 167, 177, 183 |
| abstract_inverted_index.are | 17 |
| abstract_inverted_index.for | 123 |
| abstract_inverted_index.how | 171 |
| abstract_inverted_index.may | 48 |
| abstract_inverted_index.our | 5 |
| abstract_inverted_index.the | 24, 40, 64, 129, 155, 161 |
| abstract_inverted_index.This | 30, 157 |
| abstract_inverted_index.best | 149 |
| abstract_inverted_index.bulk | 13, 46 |
| abstract_inverted_index.cell | 35, 56 |
| abstract_inverted_index.data | 60, 80, 124 |
| abstract_inverted_index.from | 12 |
| abstract_inverted_index.have | 88 |
| abstract_inverted_index.mass | 85 |
| abstract_inverted_index.mini | 158 |
| abstract_inverted_index.more | 136 |
| abstract_inverted_index.over | 19 |
| abstract_inverted_index.push | 115 |
| abstract_inverted_index.that | 45, 96 |
| abstract_inverted_index.will | 180 |
| abstract_inverted_index.(SCP) | 2 |
| abstract_inverted_index.issue | 131 |
| abstract_inverted_index.needs | 153 |
| abstract_inverted_index.these | 142 |
| abstract_inverted_index.where | 15 |
| abstract_inverted_index.Recent | 74 |
| abstract_inverted_index.cells, | 22 |
| abstract_inverted_index.cells. | 29 |
| abstract_inverted_index.closer | 172 |
| abstract_inverted_index.deeper | 182 |
| abstract_inverted_index.field. | 156 |
| abstract_inverted_index.higher | 144 |
| abstract_inverted_index.latest | 162 |
| abstract_inverted_index.omics, | 99 |
| abstract_inverted_index.remain | 151 |
| abstract_inverted_index.review | 159 |
| abstract_inverted_index.robust | 59 |
| abstract_inverted_index.sample | 77, 102 |
| abstract_inverted_index.Despite | 141 |
| abstract_inverted_index.address | 128 |
| abstract_inverted_index.broader | 184 |
| abstract_inverted_index.demands | 52 |
| abstract_inverted_index.disease | 43 |
| abstract_inverted_index.further | 114 |
| abstract_inverted_index.missing | 133 |
| abstract_inverted_index.precise | 55 |
| abstract_inverted_index.promise | 112 |
| abstract_inverted_index.protein | 70 |
| abstract_inverted_index.reveals | 33 |
| abstract_inverted_index.samples | 71 |
| abstract_inverted_index.signals | 16 |
| abstract_inverted_index.states, | 36 |
| abstract_inverted_index.through | 107 |
| abstract_inverted_index.values, | 134 |
| abstract_inverted_index.without | 72 |
| abstract_inverted_index.Advances | 118 |
| abstract_inverted_index.However, | 50 |
| abstract_inverted_index.analysis | 26 |
| abstract_inverted_index.automate | 105 |
| abstract_inverted_index.averaged | 18 |
| abstract_inverted_index.coverage | 92, 185 |
| abstract_inverted_index.distinct | 34 |
| abstract_inverted_index.enabling | 135 |
| abstract_inverted_index.granular | 31 |
| abstract_inverted_index.improved | 90 |
| abstract_inverted_index.inherent | 65 |
| abstract_inverted_index.methods, | 121 |
| abstract_inverted_index.obscure. | 49 |
| abstract_inverted_index.overcome | 63 |
| abstract_inverted_index.pressing | 152 |
| abstract_inverted_index.progress | 163 |
| abstract_inverted_index.proteome | 25, 91 |
| abstract_inverted_index.reliable | 137 |
| abstract_inverted_index.shifting | 11 |
| abstract_inverted_index.software | 168 |
| abstract_inverted_index.strides, | 143 |
| abstract_inverted_index.analyzing | 68 |
| abstract_inverted_index.consensus | 148 |
| abstract_inverted_index.handling, | 57 |
| abstract_inverted_index.integrate | 97 |
| abstract_inverted_index.pervasive | 130 |
| abstract_inverted_index.platforms | 111 |
| abstract_inverted_index.practices | 150 |
| abstract_inverted_index.thousands | 20 |
| abstract_inverted_index.workflows | 106 |
| abstract_inverted_index.Approaches | 95 |
| abstract_inverted_index.approaches | 47 |
| abstract_inverted_index.biological | 8, 139 |
| abstract_inverted_index.challenges | 66 |
| abstract_inverted_index.complexity | 9 |
| abstract_inverted_index.downstream | 138 |
| abstract_inverted_index.especially | 122 |
| abstract_inverted_index.facilitate | 181 |
| abstract_inverted_index.individual | 28 |
| abstract_inverted_index.multi-step | 101 |
| abstract_inverted_index.population | 37 |
| abstract_inverted_index.processing | 61 |
| abstract_inverted_index.proteomes. | 188 |
| abstract_inverted_index.proteomics | 1 |
| abstract_inverted_index.solutions, | 169 |
| abstract_inverted_index.strategies | 179 |
| abstract_inverted_index.streamline | 100 |
| abstract_inverted_index.summarizes | 160 |
| abstract_inverted_index.technology | 166 |
| abstract_inverted_index.Single-cell | 0 |
| abstract_inverted_index.acquisition | 81 |
| abstract_inverted_index.analytical, | 175 |
| abstract_inverted_index.boundaries. | 117 |
| abstract_inverted_index.exceptional | 53 |
| abstract_inverted_index.imputation, | 127 |
| abstract_inverted_index.innovations | 75 |
| abstract_inverted_index.integration | 173 |
| abstract_inverted_index.perspective | 32 |
| abstract_inverted_index.processing, | 103 |
| abstract_inverted_index.proteomics, | 14 |
| abstract_inverted_index.single-cell | 187 |
| abstract_inverted_index.specialized | 84, 110 |
| abstract_inverted_index.strategies, | 82 |
| abstract_inverted_index.throughput, | 145 |
| abstract_inverted_index.throughput. | 94 |
| abstract_inverted_index.experimental | 178 |
| abstract_inverted_index.highlighting | 170 |
| abstract_inverted_index.pathogenesis | 44 |
| abstract_inverted_index.preparation, | 78 |
| abstract_inverted_index.sensitivity, | 54 |
| abstract_inverted_index.separations, | 79 |
| abstract_inverted_index.spectrometry | 86 |
| abstract_inverted_index.transforming | 4 |
| abstract_inverted_index.complementary | 98 |
| abstract_inverted_index.computational | 120 |
| abstract_inverted_index.microfluidics | 108 |
| abstract_inverted_index.normalization | 125 |
| abstract_inverted_index.substantially | 89 |
| abstract_inverted_index.underpinnings | 41 |
| abstract_inverted_index.understanding | 6 |
| abstract_inverted_index.amplification. | 73 |
| abstract_inverted_index.computational, | 176 |
| abstract_inverted_index.heterogeneity, | 38 |
| abstract_inverted_index.picogram-level | 69 |
| abstract_inverted_index.instrumentation | 87 |
| abstract_inverted_index.interpretations. | 140 |
| abstract_inverted_index.reproducibility, | 146 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.5199999809265137 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.05479847 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |