Single-channel EEG completion using Cascade Transformer Article Swipe
Chao Zhang
,
Siqi Han
,
Milin Zhang
·
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2211.08645
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2211.08645
It is easy for the electroencephalogram (EEG) signal to be incomplete due to packet loss, electrode falling off, etc. This paper proposed a Cascade Transformer architecture and a loss weighting method for the single-channel EEG completion, which reduced the Normalized Root Mean Square Error (NRMSE) by 2.8% and 8.5%, respectively. With the percentage of the missing points ranging from 1% to 50%, the proposed method achieved a NRMSE from 0.026 to 0.063, which aligned with the state-of-the-art multi-channel completion solution. The proposed work shows it's feasible to perform the EEG completion with only single-channel EEG.
Related Topics
Concepts
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2211.08645
- https://arxiv.org/pdf/2211.08645
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4309302823
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4309302823Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2211.08645Digital Object Identifier
- Title
-
Single-channel EEG completion using Cascade TransformerWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-11-16Full publication date if available
- Authors
-
Chao Zhang, Siqi Han, Milin ZhangList of authors in order
- Landing page
-
https://arxiv.org/abs/2211.08645Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2211.08645Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2211.08645Direct OA link when available
- Concepts
-
Cascade, Electroencephalography, Weighting, Transformer, Computer science, Channel (broadcasting), Speech recognition, Voltage, Engineering, Telecommunications, Medicine, Electrical engineering, Psychiatry, Radiology, Chemical engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4309302823 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2211.08645 |
| ids.doi | https://doi.org/10.48550/arxiv.2211.08645 |
| ids.openalex | https://openalex.org/W4309302823 |
| fwci | |
| type | preprint |
| title | Single-channel EEG completion using Cascade Transformer |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10429 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9993000030517578 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | EEG and Brain-Computer Interfaces |
| topics[1].id | https://openalex.org/T11601 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.9937000274658203 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2804 |
| topics[1].subfield.display_name | Cellular and Molecular Neuroscience |
| topics[1].display_name | Neuroscience and Neural Engineering |
| topics[2].id | https://openalex.org/T11447 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9927999973297119 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Blind Source Separation Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C34146451 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7437235116958618 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5048094 |
| concepts[0].display_name | Cascade |
| concepts[1].id | https://openalex.org/C522805319 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7112663984298706 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q179965 |
| concepts[1].display_name | Electroencephalography |
| concepts[2].id | https://openalex.org/C183115368 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6242895126342773 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q856577 |
| concepts[2].display_name | Weighting |
| concepts[3].id | https://openalex.org/C66322947 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6154950857162476 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[3].display_name | Transformer |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5728940367698669 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C127162648 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5066378712654114 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q16858953 |
| concepts[5].display_name | Channel (broadcasting) |
| concepts[6].id | https://openalex.org/C28490314 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3446521461009979 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[6].display_name | Speech recognition |
| concepts[7].id | https://openalex.org/C165801399 |
| concepts[7].level | 2 |
| concepts[7].score | 0.24144819378852844 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[7].display_name | Voltage |
| concepts[8].id | https://openalex.org/C127413603 |
| concepts[8].level | 0 |
| concepts[8].score | 0.17666271328926086 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[8].display_name | Engineering |
| concepts[9].id | https://openalex.org/C76155785 |
| concepts[9].level | 1 |
| concepts[9].score | 0.11920660734176636 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[9].display_name | Telecommunications |
| concepts[10].id | https://openalex.org/C71924100 |
| concepts[10].level | 0 |
| concepts[10].score | 0.106220543384552 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[10].display_name | Medicine |
| concepts[11].id | https://openalex.org/C119599485 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0839475691318512 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[11].display_name | Electrical engineering |
| concepts[12].id | https://openalex.org/C118552586 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7867 |
| concepts[12].display_name | Psychiatry |
| concepts[13].id | https://openalex.org/C126838900 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[13].display_name | Radiology |
| concepts[14].id | https://openalex.org/C42360764 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q83588 |
| concepts[14].display_name | Chemical engineering |
| keywords[0].id | https://openalex.org/keywords/cascade |
| keywords[0].score | 0.7437235116958618 |
| keywords[0].display_name | Cascade |
| keywords[1].id | https://openalex.org/keywords/electroencephalography |
| keywords[1].score | 0.7112663984298706 |
| keywords[1].display_name | Electroencephalography |
| keywords[2].id | https://openalex.org/keywords/weighting |
| keywords[2].score | 0.6242895126342773 |
| keywords[2].display_name | Weighting |
| keywords[3].id | https://openalex.org/keywords/transformer |
| keywords[3].score | 0.6154950857162476 |
| keywords[3].display_name | Transformer |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.5728940367698669 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/channel |
| keywords[5].score | 0.5066378712654114 |
| keywords[5].display_name | Channel (broadcasting) |
| keywords[6].id | https://openalex.org/keywords/speech-recognition |
| keywords[6].score | 0.3446521461009979 |
| keywords[6].display_name | Speech recognition |
| keywords[7].id | https://openalex.org/keywords/voltage |
| keywords[7].score | 0.24144819378852844 |
| keywords[7].display_name | Voltage |
| keywords[8].id | https://openalex.org/keywords/engineering |
| keywords[8].score | 0.17666271328926086 |
| keywords[8].display_name | Engineering |
| keywords[9].id | https://openalex.org/keywords/telecommunications |
| keywords[9].score | 0.11920660734176636 |
| keywords[9].display_name | Telecommunications |
| keywords[10].id | https://openalex.org/keywords/medicine |
| keywords[10].score | 0.106220543384552 |
| keywords[10].display_name | Medicine |
| keywords[11].id | https://openalex.org/keywords/electrical-engineering |
| keywords[11].score | 0.0839475691318512 |
| keywords[11].display_name | Electrical engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2211.08645 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2211.08645 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2211.08645 |
| locations[1].id | doi:10.48550/arxiv.2211.08645 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2211.08645 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100460223 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9583-0722 |
| authorships[0].author.display_name | Chao Zhang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhang, Chao |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5033922414 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3041-5704 |
| authorships[1].author.display_name | Siqi Han |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Han, Siqi |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100656860 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6915-0734 |
| authorships[2].author.display_name | Milin Zhang |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Zhang, Milin |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2211.08645 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Single-channel EEG completion using Cascade Transformer |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10429 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9993000030517578 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | EEG and Brain-Computer Interfaces |
| related_works | https://openalex.org/W2153719181, https://openalex.org/W1971748923, https://openalex.org/W1566155057, https://openalex.org/W2180954594, https://openalex.org/W2060986072, https://openalex.org/W2052835778, https://openalex.org/W2049003611, https://openalex.org/W2052574922, https://openalex.org/W2108418243, https://openalex.org/W64588465 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2211.08645 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2211.08645 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2211.08645 |
| primary_location.id | pmh:oai:arXiv.org:2211.08645 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2211.08645 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2211.08645 |
| publication_date | 2022-11-16 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 22, 27, 66 |
| abstract_inverted_index.1% | 59 |
| abstract_inverted_index.It | 0 |
| abstract_inverted_index.be | 9 |
| abstract_inverted_index.by | 45 |
| abstract_inverted_index.is | 1 |
| abstract_inverted_index.of | 53 |
| abstract_inverted_index.to | 8, 12, 60, 70, 86 |
| abstract_inverted_index.EEG | 34, 89 |
| abstract_inverted_index.The | 80 |
| abstract_inverted_index.and | 26, 47 |
| abstract_inverted_index.due | 11 |
| abstract_inverted_index.for | 3, 31 |
| abstract_inverted_index.the | 4, 32, 38, 51, 54, 62, 75, 88 |
| abstract_inverted_index.2.8% | 46 |
| abstract_inverted_index.50%, | 61 |
| abstract_inverted_index.EEG. | 94 |
| abstract_inverted_index.Mean | 41 |
| abstract_inverted_index.Root | 40 |
| abstract_inverted_index.This | 19 |
| abstract_inverted_index.With | 50 |
| abstract_inverted_index.easy | 2 |
| abstract_inverted_index.etc. | 18 |
| abstract_inverted_index.from | 58, 68 |
| abstract_inverted_index.it's | 84 |
| abstract_inverted_index.loss | 28 |
| abstract_inverted_index.off, | 17 |
| abstract_inverted_index.only | 92 |
| abstract_inverted_index.with | 74, 91 |
| abstract_inverted_index.work | 82 |
| abstract_inverted_index.(EEG) | 6 |
| abstract_inverted_index.0.026 | 69 |
| abstract_inverted_index.8.5%, | 48 |
| abstract_inverted_index.Error | 43 |
| abstract_inverted_index.NRMSE | 67 |
| abstract_inverted_index.loss, | 14 |
| abstract_inverted_index.paper | 20 |
| abstract_inverted_index.shows | 83 |
| abstract_inverted_index.which | 36, 72 |
| abstract_inverted_index.0.063, | 71 |
| abstract_inverted_index.Square | 42 |
| abstract_inverted_index.method | 30, 64 |
| abstract_inverted_index.packet | 13 |
| abstract_inverted_index.points | 56 |
| abstract_inverted_index.signal | 7 |
| abstract_inverted_index.(NRMSE) | 44 |
| abstract_inverted_index.Cascade | 23 |
| abstract_inverted_index.aligned | 73 |
| abstract_inverted_index.falling | 16 |
| abstract_inverted_index.missing | 55 |
| abstract_inverted_index.perform | 87 |
| abstract_inverted_index.ranging | 57 |
| abstract_inverted_index.reduced | 37 |
| abstract_inverted_index.achieved | 65 |
| abstract_inverted_index.feasible | 85 |
| abstract_inverted_index.proposed | 21, 63, 81 |
| abstract_inverted_index.electrode | 15 |
| abstract_inverted_index.solution. | 79 |
| abstract_inverted_index.weighting | 29 |
| abstract_inverted_index.Normalized | 39 |
| abstract_inverted_index.completion | 78, 90 |
| abstract_inverted_index.incomplete | 10 |
| abstract_inverted_index.percentage | 52 |
| abstract_inverted_index.Transformer | 24 |
| abstract_inverted_index.completion, | 35 |
| abstract_inverted_index.architecture | 25 |
| abstract_inverted_index.multi-channel | 77 |
| abstract_inverted_index.respectively. | 49 |
| abstract_inverted_index.single-channel | 33, 93 |
| abstract_inverted_index.state-of-the-art | 76 |
| abstract_inverted_index.electroencephalogram | 5 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.7099999785423279 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile |