Single Image Super-resolution via a Lightweight Residual Convolutional Neural Network Article Swipe
YOU?
·
· 2017
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1703.08173
Recent years have witnessed great success of convolutional neural network (CNN) for various problems both in low and high level visions. Especially noteworthy is the residual network which was originally proposed to handle high-level vision problems and enjoys several merits. This paper aims to extend the merits of residual network, such as skip connection induced fast training, for a typical low-level vision problem, i.e., single image super-resolution. In general, the two main challenges of existing deep CNN for supper-resolution lie in the gradient exploding/vanishing problem and large numbers of parameters or computational cost as CNN goes deeper. Correspondingly, the skip connections or identity mapping shortcuts are utilized to avoid gradient exploding/vanishing problem. In addition, the skip connections have naturally centered the activation which led to better performance. To tackle with the second problem, a lightweight CNN architecture which has carefully designed width, depth and skip connections was proposed. In particular, a strategy of gradually varying the shape of network has been proposed for residual network. Different residual architectures for image super-resolution have also been compared. Experimental results have demonstrated that the proposed CNN model can not only achieve state-of-the-art PSNR and SSIM results for single image super-resolution but also produce visually pleasant results. This paper has extended the mmm 2017 oral conference paper with a considerable new analyses and more experiments especially from the perspective of centering activations and ensemble behaviors of residual network.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1703.08173
- https://arxiv.org/pdf/1703.08173
- OA Status
- green
- Cited By
- 13
- References
- 37
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2773653677
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2773653677Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1703.08173Digital Object Identifier
- Title
-
Single Image Super-resolution via a Lightweight Residual Convolutional Neural NetworkWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2017Year of publication
- Publication date
-
2017-03-23Full publication date if available
- Authors
-
Yudong Liang, Ze Yang, Kai Zhang, Yihui He, Jinjun Wang, Nanning ZhengList of authors in order
- Landing page
-
https://arxiv.org/abs/1703.08173Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1703.08173Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1703.08173Direct OA link when available
- Concepts
-
Convolutional neural network, Residual, Computer science, Superresolution, Artificial intelligence, Image (mathematics), Resolution (logic), Computer vision, Pattern recognition (psychology), AlgorithmTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
13Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1, 2021: 2, 2020: 2, 2019: 4, 2018: 4Per-year citation counts (last 5 years)
- References (count)
-
37Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2773653677 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1703.08173 |
| ids.doi | https://doi.org/10.48550/arxiv.1703.08173 |
| ids.mag | 2773653677 |
| ids.openalex | https://openalex.org/W2773653677 |
| fwci | |
| type | preprint |
| title | Single Image Super-resolution via a Lightweight Residual Convolutional Neural Network |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11105 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Image Processing Techniques |
| topics[1].id | https://openalex.org/T13114 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9975000023841858 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2214 |
| topics[1].subfield.display_name | Media Technology |
| topics[1].display_name | Image Processing Techniques and Applications |
| topics[2].id | https://openalex.org/T10531 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9973000288009644 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Vision and Imaging |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C81363708 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8347527384757996 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[0].display_name | Convolutional neural network |
| concepts[1].id | https://openalex.org/C155512373 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7697864174842834 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q287450 |
| concepts[1].display_name | Residual |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6024643182754517 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C141239990 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5223801732063293 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q957423 |
| concepts[3].display_name | Superresolution |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5131195187568665 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C115961682 |
| concepts[5].level | 2 |
| concepts[5].score | 0.48198455572128296 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[5].display_name | Image (mathematics) |
| concepts[6].id | https://openalex.org/C138268822 |
| concepts[6].level | 2 |
| concepts[6].score | 0.46736761927604675 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1051925 |
| concepts[6].display_name | Resolution (logic) |
| concepts[7].id | https://openalex.org/C31972630 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4098063111305237 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[7].display_name | Computer vision |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.39863869547843933 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C11413529 |
| concepts[9].level | 1 |
| concepts[9].score | 0.1629999876022339 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[9].display_name | Algorithm |
| keywords[0].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[0].score | 0.8347527384757996 |
| keywords[0].display_name | Convolutional neural network |
| keywords[1].id | https://openalex.org/keywords/residual |
| keywords[1].score | 0.7697864174842834 |
| keywords[1].display_name | Residual |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6024643182754517 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/superresolution |
| keywords[3].score | 0.5223801732063293 |
| keywords[3].display_name | Superresolution |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5131195187568665 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/image |
| keywords[5].score | 0.48198455572128296 |
| keywords[5].display_name | Image (mathematics) |
| keywords[6].id | https://openalex.org/keywords/resolution |
| keywords[6].score | 0.46736761927604675 |
| keywords[6].display_name | Resolution (logic) |
| keywords[7].id | https://openalex.org/keywords/computer-vision |
| keywords[7].score | 0.4098063111305237 |
| keywords[7].display_name | Computer vision |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.39863869547843933 |
| keywords[8].display_name | Pattern recognition (psychology) |
| keywords[9].id | https://openalex.org/keywords/algorithm |
| keywords[9].score | 0.1629999876022339 |
| keywords[9].display_name | Algorithm |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1703.08173 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1703.08173 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1703.08173 |
| locations[1].id | doi:10.48550/arxiv.1703.08173 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.1703.08173 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5021766396 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7294-6466 |
| authorships[0].author.display_name | Yudong Liang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yudong Liang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100758949 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6299-7649 |
| authorships[1].author.display_name | Ze Yang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ze Yang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100323983 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6319-3722 |
| authorships[2].author.display_name | Kai Zhang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Kai Zhang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5076586872 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1057-6826 |
| authorships[3].author.display_name | Yihui He |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yihui He |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5111883017 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Jinjun Wang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Jinjun Wang |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5047405956 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-1608-8257 |
| authorships[5].author.display_name | Nanning Zheng |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Nanning Zheng |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1703.08173 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2017-12-22T00:00:00 |
| display_name | Single Image Super-resolution via a Lightweight Residual Convolutional Neural Network |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11105 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Image Processing Techniques |
| related_works | https://openalex.org/W2560215812, https://openalex.org/W2949601986, https://openalex.org/W4293226380, https://openalex.org/W2788972299, https://openalex.org/W2498789492, https://openalex.org/W4389989350, https://openalex.org/W2143529858, https://openalex.org/W4367590696, https://openalex.org/W2056165575, https://openalex.org/W2358774654 |
| cited_by_count | 13 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2021 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2020 |
| counts_by_year[2].cited_by_count | 2 |
| counts_by_year[3].year | 2019 |
| counts_by_year[3].cited_by_count | 4 |
| counts_by_year[4].year | 2018 |
| counts_by_year[4].cited_by_count | 4 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:1703.08173 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1703.08173 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1703.08173 |
| primary_location.id | pmh:oai:arXiv.org:1703.08173 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1703.08173 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1703.08173 |
| publication_date | 2017-03-23 |
| publication_year | 2017 |
| referenced_works | https://openalex.org/W2187133255, https://openalex.org/W2949427019, https://openalex.org/W1686810756, https://openalex.org/W54257720, https://openalex.org/W2242218935, https://openalex.org/W2541674938, https://openalex.org/W1930824406, https://openalex.org/W2118963448, https://openalex.org/W2152424459, https://openalex.org/W2739757502, https://openalex.org/W2395103039, https://openalex.org/W2194775991, https://openalex.org/W2293098732, https://openalex.org/W2183341477, https://openalex.org/W2964350391, https://openalex.org/W2562010997, https://openalex.org/W935139217, https://openalex.org/W2605134680, https://openalex.org/W2950872229, https://openalex.org/W2200594420, https://openalex.org/W2735224642, https://openalex.org/W2949117887, https://openalex.org/W2263468737, https://openalex.org/W1992774725, https://openalex.org/W2523714292, https://openalex.org/W2097117768, https://openalex.org/W1950594372, https://openalex.org/W2161516371, https://openalex.org/W2149760002, https://openalex.org/W1576278180, https://openalex.org/W2476548250, https://openalex.org/W2016598597, https://openalex.org/W2176412452, https://openalex.org/W2417716951, https://openalex.org/W2290089146, https://openalex.org/W2150081556, https://openalex.org/W2747898905 |
| referenced_works_count | 37 |
| abstract_inverted_index.a | 58, 133, 150, 214 |
| abstract_inverted_index.In | 67, 112, 148 |
| abstract_inverted_index.To | 127 |
| abstract_inverted_index.as | 51, 93 |
| abstract_inverted_index.in | 15, 80 |
| abstract_inverted_index.is | 23 |
| abstract_inverted_index.of | 6, 47, 73, 88, 152, 157, 225, 231 |
| abstract_inverted_index.or | 90, 101 |
| abstract_inverted_index.to | 31, 43, 107, 124 |
| abstract_inverted_index.CNN | 76, 94, 135, 182 |
| abstract_inverted_index.and | 17, 36, 85, 143, 190, 218, 228 |
| abstract_inverted_index.are | 105 |
| abstract_inverted_index.but | 197 |
| abstract_inverted_index.can | 184 |
| abstract_inverted_index.for | 11, 57, 77, 162, 168, 193 |
| abstract_inverted_index.has | 138, 159, 205 |
| abstract_inverted_index.led | 123 |
| abstract_inverted_index.lie | 79 |
| abstract_inverted_index.low | 16 |
| abstract_inverted_index.mmm | 208 |
| abstract_inverted_index.new | 216 |
| abstract_inverted_index.not | 185 |
| abstract_inverted_index.the | 24, 45, 69, 81, 98, 114, 120, 130, 155, 180, 207, 223 |
| abstract_inverted_index.two | 70 |
| abstract_inverted_index.was | 28, 146 |
| abstract_inverted_index.2017 | 209 |
| abstract_inverted_index.PSNR | 189 |
| abstract_inverted_index.SSIM | 191 |
| abstract_inverted_index.This | 40, 203 |
| abstract_inverted_index.aims | 42 |
| abstract_inverted_index.also | 172, 198 |
| abstract_inverted_index.been | 160, 173 |
| abstract_inverted_index.both | 14 |
| abstract_inverted_index.cost | 92 |
| abstract_inverted_index.deep | 75 |
| abstract_inverted_index.fast | 55 |
| abstract_inverted_index.from | 222 |
| abstract_inverted_index.goes | 95 |
| abstract_inverted_index.have | 2, 117, 171, 177 |
| abstract_inverted_index.high | 18 |
| abstract_inverted_index.main | 71 |
| abstract_inverted_index.more | 219 |
| abstract_inverted_index.only | 186 |
| abstract_inverted_index.oral | 210 |
| abstract_inverted_index.skip | 52, 99, 115, 144 |
| abstract_inverted_index.such | 50 |
| abstract_inverted_index.that | 179 |
| abstract_inverted_index.with | 129, 213 |
| abstract_inverted_index.(CNN) | 10 |
| abstract_inverted_index.avoid | 108 |
| abstract_inverted_index.depth | 142 |
| abstract_inverted_index.great | 4 |
| abstract_inverted_index.i.e., | 63 |
| abstract_inverted_index.image | 65, 169, 195 |
| abstract_inverted_index.large | 86 |
| abstract_inverted_index.level | 19 |
| abstract_inverted_index.model | 183 |
| abstract_inverted_index.paper | 41, 204, 212 |
| abstract_inverted_index.shape | 156 |
| abstract_inverted_index.which | 27, 122, 137 |
| abstract_inverted_index.years | 1 |
| abstract_inverted_index.Recent | 0 |
| abstract_inverted_index.better | 125 |
| abstract_inverted_index.enjoys | 37 |
| abstract_inverted_index.extend | 44 |
| abstract_inverted_index.handle | 32 |
| abstract_inverted_index.merits | 46 |
| abstract_inverted_index.neural | 8 |
| abstract_inverted_index.second | 131 |
| abstract_inverted_index.single | 64, 194 |
| abstract_inverted_index.tackle | 128 |
| abstract_inverted_index.vision | 34, 61 |
| abstract_inverted_index.width, | 141 |
| abstract_inverted_index.achieve | 187 |
| abstract_inverted_index.deeper. | 96 |
| abstract_inverted_index.induced | 54 |
| abstract_inverted_index.mapping | 103 |
| abstract_inverted_index.merits. | 39 |
| abstract_inverted_index.network | 9, 26, 158 |
| abstract_inverted_index.numbers | 87 |
| abstract_inverted_index.problem | 84 |
| abstract_inverted_index.produce | 199 |
| abstract_inverted_index.results | 176, 192 |
| abstract_inverted_index.several | 38 |
| abstract_inverted_index.success | 5 |
| abstract_inverted_index.typical | 59 |
| abstract_inverted_index.various | 12 |
| abstract_inverted_index.varying | 154 |
| abstract_inverted_index.analyses | 217 |
| abstract_inverted_index.centered | 119 |
| abstract_inverted_index.designed | 140 |
| abstract_inverted_index.ensemble | 229 |
| abstract_inverted_index.existing | 74 |
| abstract_inverted_index.extended | 206 |
| abstract_inverted_index.general, | 68 |
| abstract_inverted_index.gradient | 82, 109 |
| abstract_inverted_index.identity | 102 |
| abstract_inverted_index.network, | 49 |
| abstract_inverted_index.network. | 164, 233 |
| abstract_inverted_index.pleasant | 201 |
| abstract_inverted_index.problem, | 62, 132 |
| abstract_inverted_index.problem. | 111 |
| abstract_inverted_index.problems | 13, 35 |
| abstract_inverted_index.proposed | 30, 161, 181 |
| abstract_inverted_index.residual | 25, 48, 163, 166, 232 |
| abstract_inverted_index.results. | 202 |
| abstract_inverted_index.strategy | 151 |
| abstract_inverted_index.utilized | 106 |
| abstract_inverted_index.visions. | 20 |
| abstract_inverted_index.visually | 200 |
| abstract_inverted_index.Different | 165 |
| abstract_inverted_index.addition, | 113 |
| abstract_inverted_index.behaviors | 230 |
| abstract_inverted_index.carefully | 139 |
| abstract_inverted_index.centering | 226 |
| abstract_inverted_index.compared. | 174 |
| abstract_inverted_index.gradually | 153 |
| abstract_inverted_index.low-level | 60 |
| abstract_inverted_index.naturally | 118 |
| abstract_inverted_index.proposed. | 147 |
| abstract_inverted_index.shortcuts | 104 |
| abstract_inverted_index.training, | 56 |
| abstract_inverted_index.witnessed | 3 |
| abstract_inverted_index.Especially | 21 |
| abstract_inverted_index.activation | 121 |
| abstract_inverted_index.challenges | 72 |
| abstract_inverted_index.conference | 211 |
| abstract_inverted_index.connection | 53 |
| abstract_inverted_index.especially | 221 |
| abstract_inverted_index.high-level | 33 |
| abstract_inverted_index.noteworthy | 22 |
| abstract_inverted_index.originally | 29 |
| abstract_inverted_index.parameters | 89 |
| abstract_inverted_index.activations | 227 |
| abstract_inverted_index.connections | 100, 116, 145 |
| abstract_inverted_index.experiments | 220 |
| abstract_inverted_index.lightweight | 134 |
| abstract_inverted_index.particular, | 149 |
| abstract_inverted_index.perspective | 224 |
| abstract_inverted_index.Experimental | 175 |
| abstract_inverted_index.architecture | 136 |
| abstract_inverted_index.considerable | 215 |
| abstract_inverted_index.demonstrated | 178 |
| abstract_inverted_index.performance. | 126 |
| abstract_inverted_index.architectures | 167 |
| abstract_inverted_index.computational | 91 |
| abstract_inverted_index.convolutional | 7 |
| abstract_inverted_index.Correspondingly, | 97 |
| abstract_inverted_index.state-of-the-art | 188 |
| abstract_inverted_index.super-resolution | 170, 196 |
| abstract_inverted_index.super-resolution. | 66 |
| abstract_inverted_index.supper-resolution | 78 |
| abstract_inverted_index.exploding/vanishing | 83, 110 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |