Single-view Neural Radiance Fields with Depth Teacher Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2303.09952
Neural Radiance Fields (NeRF) have been proposed for photorealistic novel view rendering. However, it requires many different views of one scene for training. Moreover, it has poor generalizations to new scenes and requires retraining or fine-tuning on each scene. In this paper, we develop a new NeRF model for novel view synthesis using only a single image as input. We propose to combine the (coarse) planar rendering and the (fine) volume rendering to achieve higher rendering quality and better generalizations. We also design a depth teacher net that predicts dense pseudo depth maps to supervise the joint rendering mechanism and boost the learning of consistent 3D geometry. We evaluate our method on three challenging datasets. It outperforms state-of-the-art single-view NeRFs by achieving 5$\sim$20\% improvements in PSNR and reducing 20$\sim$50\% of the errors in the depth rendering. It also shows excellent generalization abilities to unseen data without the need to fine-tune on each new scene.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2303.09952
- https://arxiv.org/pdf/2303.09952
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4327992529
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4327992529Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2303.09952Digital Object Identifier
- Title
-
Single-view Neural Radiance Fields with Depth TeacherWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-03-17Full publication date if available
- Authors
-
Yu-Rui Chen, Chun Gu, Feihu Zhang, Li ZhangList of authors in order
- Landing page
-
https://arxiv.org/abs/2303.09952Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2303.09952Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2303.09952Direct OA link when available
- Concepts
-
Rendering (computer graphics), Computer science, Radiance, Artificial intelligence, Image-based modeling and rendering, Deep neural networks, Retraining, Computer vision, Artificial neural network, 3D rendering, Computer graphics (images), Volume rendering, Depth map, Image (mathematics), Geology, Remote sensing, Business, International tradeTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4327992529 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2303.09952 |
| ids.doi | https://doi.org/10.48550/arxiv.2303.09952 |
| ids.openalex | https://openalex.org/W4327992529 |
| fwci | |
| type | preprint |
| title | Single-view Neural Radiance Fields with Depth Teacher |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10531 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Vision and Imaging |
| topics[1].id | https://openalex.org/T10481 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9973000288009644 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1704 |
| topics[1].subfield.display_name | Computer Graphics and Computer-Aided Design |
| topics[1].display_name | Computer Graphics and Visualization Techniques |
| topics[2].id | https://openalex.org/T10719 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9936000108718872 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2206 |
| topics[2].subfield.display_name | Computational Mechanics |
| topics[2].display_name | 3D Shape Modeling and Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C205711294 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8490224480628967 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q176953 |
| concepts[0].display_name | Rendering (computer graphics) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7528026103973389 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C23690007 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7327061891555786 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1411145 |
| concepts[2].display_name | Radiance |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6120465397834778 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C44185422 |
| concepts[4].level | 3 |
| concepts[4].score | 0.52445387840271 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q6002064 |
| concepts[4].display_name | Image-based modeling and rendering |
| concepts[5].id | https://openalex.org/C2984842247 |
| concepts[5].level | 3 |
| concepts[5].score | 0.485825777053833 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[5].display_name | Deep neural networks |
| concepts[6].id | https://openalex.org/C2778712577 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4743807911872864 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3505966 |
| concepts[6].display_name | Retraining |
| concepts[7].id | https://openalex.org/C31972630 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4674661457538605 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[7].display_name | Computer vision |
| concepts[8].id | https://openalex.org/C50644808 |
| concepts[8].level | 2 |
| concepts[8].score | 0.462988018989563 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[8].display_name | Artificial neural network |
| concepts[9].id | https://openalex.org/C36816356 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4518173038959503 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q16911860 |
| concepts[9].display_name | 3D rendering |
| concepts[10].id | https://openalex.org/C121684516 |
| concepts[10].level | 1 |
| concepts[10].score | 0.4284575879573822 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7600677 |
| concepts[10].display_name | Computer graphics (images) |
| concepts[11].id | https://openalex.org/C30769735 |
| concepts[11].level | 3 |
| concepts[11].score | 0.4253585934638977 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2165951 |
| concepts[11].display_name | Volume rendering |
| concepts[12].id | https://openalex.org/C141268832 |
| concepts[12].level | 3 |
| concepts[12].score | 0.4118196368217468 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2940499 |
| concepts[12].display_name | Depth map |
| concepts[13].id | https://openalex.org/C115961682 |
| concepts[13].level | 2 |
| concepts[13].score | 0.1944969892501831 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[13].display_name | Image (mathematics) |
| concepts[14].id | https://openalex.org/C127313418 |
| concepts[14].level | 0 |
| concepts[14].score | 0.10616573691368103 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[14].display_name | Geology |
| concepts[15].id | https://openalex.org/C62649853 |
| concepts[15].level | 1 |
| concepts[15].score | 0.07219627499580383 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[15].display_name | Remote sensing |
| concepts[16].id | https://openalex.org/C144133560 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[16].display_name | Business |
| concepts[17].id | https://openalex.org/C155202549 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q178803 |
| concepts[17].display_name | International trade |
| keywords[0].id | https://openalex.org/keywords/rendering |
| keywords[0].score | 0.8490224480628967 |
| keywords[0].display_name | Rendering (computer graphics) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7528026103973389 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/radiance |
| keywords[2].score | 0.7327061891555786 |
| keywords[2].display_name | Radiance |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6120465397834778 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/image-based-modeling-and-rendering |
| keywords[4].score | 0.52445387840271 |
| keywords[4].display_name | Image-based modeling and rendering |
| keywords[5].id | https://openalex.org/keywords/deep-neural-networks |
| keywords[5].score | 0.485825777053833 |
| keywords[5].display_name | Deep neural networks |
| keywords[6].id | https://openalex.org/keywords/retraining |
| keywords[6].score | 0.4743807911872864 |
| keywords[6].display_name | Retraining |
| keywords[7].id | https://openalex.org/keywords/computer-vision |
| keywords[7].score | 0.4674661457538605 |
| keywords[7].display_name | Computer vision |
| keywords[8].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[8].score | 0.462988018989563 |
| keywords[8].display_name | Artificial neural network |
| keywords[9].id | https://openalex.org/keywords/3d-rendering |
| keywords[9].score | 0.4518173038959503 |
| keywords[9].display_name | 3D rendering |
| keywords[10].id | https://openalex.org/keywords/computer-graphics |
| keywords[10].score | 0.4284575879573822 |
| keywords[10].display_name | Computer graphics (images) |
| keywords[11].id | https://openalex.org/keywords/volume-rendering |
| keywords[11].score | 0.4253585934638977 |
| keywords[11].display_name | Volume rendering |
| keywords[12].id | https://openalex.org/keywords/depth-map |
| keywords[12].score | 0.4118196368217468 |
| keywords[12].display_name | Depth map |
| keywords[13].id | https://openalex.org/keywords/image |
| keywords[13].score | 0.1944969892501831 |
| keywords[13].display_name | Image (mathematics) |
| keywords[14].id | https://openalex.org/keywords/geology |
| keywords[14].score | 0.10616573691368103 |
| keywords[14].display_name | Geology |
| keywords[15].id | https://openalex.org/keywords/remote-sensing |
| keywords[15].score | 0.07219627499580383 |
| keywords[15].display_name | Remote sensing |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2303.09952 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2303.09952 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2303.09952 |
| locations[1].id | doi:10.48550/arxiv.2303.09952 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2303.09952 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5049569903 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1564-7750 |
| authorships[0].author.display_name | Yu-Rui Chen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chen, Yurui |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100537474 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Chun Gu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Gu, Chun |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5101421861 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0712-5722 |
| authorships[2].author.display_name | Feihu Zhang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhang, Feihu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100425666 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9208-1949 |
| authorships[3].author.display_name | Li Zhang |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Zhang, Li |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2303.09952 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Single-view Neural Radiance Fields with Depth Teacher |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10531 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Vision and Imaging |
| related_works | https://openalex.org/W2519546352, https://openalex.org/W2000818808, https://openalex.org/W4244795592, https://openalex.org/W2105109486, https://openalex.org/W2028900186, https://openalex.org/W2415504098, https://openalex.org/W2067132795, https://openalex.org/W2098484428, https://openalex.org/W2117511222, https://openalex.org/W2117760822 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2303.09952 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2303.09952 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2303.09952 |
| primary_location.id | pmh:oai:arXiv.org:2303.09952 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2303.09952 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2303.09952 |
| publication_date | 2023-03-17 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 44, 54, 83 |
| abstract_inverted_index.3D | 105 |
| abstract_inverted_index.In | 39 |
| abstract_inverted_index.It | 115, 136 |
| abstract_inverted_index.We | 59, 80, 107 |
| abstract_inverted_index.as | 57 |
| abstract_inverted_index.by | 120 |
| abstract_inverted_index.in | 124, 132 |
| abstract_inverted_index.it | 13, 24 |
| abstract_inverted_index.of | 18, 103, 129 |
| abstract_inverted_index.on | 36, 111, 150 |
| abstract_inverted_index.or | 34 |
| abstract_inverted_index.to | 28, 61, 72, 93, 142, 148 |
| abstract_inverted_index.we | 42 |
| abstract_inverted_index.and | 31, 67, 77, 99, 126 |
| abstract_inverted_index.for | 7, 21, 48 |
| abstract_inverted_index.has | 25 |
| abstract_inverted_index.net | 86 |
| abstract_inverted_index.new | 29, 45, 152 |
| abstract_inverted_index.one | 19 |
| abstract_inverted_index.our | 109 |
| abstract_inverted_index.the | 63, 68, 95, 101, 130, 133, 146 |
| abstract_inverted_index.NeRF | 46 |
| abstract_inverted_index.PSNR | 125 |
| abstract_inverted_index.also | 81, 137 |
| abstract_inverted_index.been | 5 |
| abstract_inverted_index.data | 144 |
| abstract_inverted_index.each | 37, 151 |
| abstract_inverted_index.have | 4 |
| abstract_inverted_index.many | 15 |
| abstract_inverted_index.maps | 92 |
| abstract_inverted_index.need | 147 |
| abstract_inverted_index.only | 53 |
| abstract_inverted_index.poor | 26 |
| abstract_inverted_index.that | 87 |
| abstract_inverted_index.this | 40 |
| abstract_inverted_index.view | 10, 50 |
| abstract_inverted_index.NeRFs | 119 |
| abstract_inverted_index.boost | 100 |
| abstract_inverted_index.dense | 89 |
| abstract_inverted_index.depth | 84, 91, 134 |
| abstract_inverted_index.image | 56 |
| abstract_inverted_index.joint | 96 |
| abstract_inverted_index.model | 47 |
| abstract_inverted_index.novel | 9, 49 |
| abstract_inverted_index.scene | 20 |
| abstract_inverted_index.shows | 138 |
| abstract_inverted_index.three | 112 |
| abstract_inverted_index.using | 52 |
| abstract_inverted_index.views | 17 |
| abstract_inverted_index.(NeRF) | 3 |
| abstract_inverted_index.(fine) | 69 |
| abstract_inverted_index.Fields | 2 |
| abstract_inverted_index.Neural | 0 |
| abstract_inverted_index.better | 78 |
| abstract_inverted_index.design | 82 |
| abstract_inverted_index.errors | 131 |
| abstract_inverted_index.higher | 74 |
| abstract_inverted_index.input. | 58 |
| abstract_inverted_index.method | 110 |
| abstract_inverted_index.paper, | 41 |
| abstract_inverted_index.planar | 65 |
| abstract_inverted_index.pseudo | 90 |
| abstract_inverted_index.scene. | 38, 153 |
| abstract_inverted_index.scenes | 30 |
| abstract_inverted_index.single | 55 |
| abstract_inverted_index.unseen | 143 |
| abstract_inverted_index.volume | 70 |
| abstract_inverted_index.achieve | 73 |
| abstract_inverted_index.combine | 62 |
| abstract_inverted_index.develop | 43 |
| abstract_inverted_index.propose | 60 |
| abstract_inverted_index.quality | 76 |
| abstract_inverted_index.teacher | 85 |
| abstract_inverted_index.without | 145 |
| abstract_inverted_index.(coarse) | 64 |
| abstract_inverted_index.However, | 12 |
| abstract_inverted_index.Radiance | 1 |
| abstract_inverted_index.evaluate | 108 |
| abstract_inverted_index.learning | 102 |
| abstract_inverted_index.predicts | 88 |
| abstract_inverted_index.proposed | 6 |
| abstract_inverted_index.reducing | 127 |
| abstract_inverted_index.requires | 14, 32 |
| abstract_inverted_index.Moreover, | 23 |
| abstract_inverted_index.abilities | 141 |
| abstract_inverted_index.achieving | 121 |
| abstract_inverted_index.datasets. | 114 |
| abstract_inverted_index.different | 16 |
| abstract_inverted_index.excellent | 139 |
| abstract_inverted_index.fine-tune | 149 |
| abstract_inverted_index.geometry. | 106 |
| abstract_inverted_index.mechanism | 98 |
| abstract_inverted_index.rendering | 66, 71, 75, 97 |
| abstract_inverted_index.supervise | 94 |
| abstract_inverted_index.synthesis | 51 |
| abstract_inverted_index.training. | 22 |
| abstract_inverted_index.consistent | 104 |
| abstract_inverted_index.rendering. | 11, 135 |
| abstract_inverted_index.retraining | 33 |
| abstract_inverted_index.5$\sim$20\% | 122 |
| abstract_inverted_index.challenging | 113 |
| abstract_inverted_index.fine-tuning | 35 |
| abstract_inverted_index.outperforms | 116 |
| abstract_inverted_index.single-view | 118 |
| abstract_inverted_index.20$\sim$50\% | 128 |
| abstract_inverted_index.improvements | 123 |
| abstract_inverted_index.generalization | 140 |
| abstract_inverted_index.photorealistic | 8 |
| abstract_inverted_index.generalizations | 27 |
| abstract_inverted_index.generalizations. | 79 |
| abstract_inverted_index.state-of-the-art | 117 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.7599999904632568 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile |