Skeletonization Quality Evaluation: Geometric Metrics for Point Cloud Analysis in Robotics Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2504.00032
Skeletonization is a powerful tool for shape analysis, rooted in the inherent instinct to understand an object's morphology. It has found applications across various domains, including robotics. Although skeletonization algorithms have been studied in recent years, their performance is rarely quantified with detailed numerical evaluations. This work focuses on defining and quantifying geometric properties to systematically score the skeletonization results of point cloud shapes across multiple aspects, including topological similarity, boundedness, centeredness, and smoothness. We introduce these representative metric definitions along with a numerical scoring framework to analyze skeletonization outcomes concerning point cloud data for different scenarios, from object manipulation to mobile robot navigation. Additionally, we provide an open-source tool to enable the research community to evaluate and refine their skeleton models. Finally, we assess the performance and sensitivity of the proposed geometric evaluation methods from various robotic applications.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2504.00032
- https://arxiv.org/pdf/2504.00032
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4417222493
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4417222493Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2504.00032Digital Object Identifier
- Title
-
Skeletonization Quality Evaluation: Geometric Metrics for Point Cloud Analysis in RoboticsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-29Full publication date if available
- Authors
-
Qingmeng Wen, Yu‐Kun Lai, Ze Ji, Seyed Amir TafrishiList of authors in order
- Landing page
-
https://arxiv.org/abs/2504.00032Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2504.00032Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2504.00032Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4417222493 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2504.00032 |
| ids.doi | https://doi.org/10.48550/arxiv.2504.00032 |
| ids.openalex | https://openalex.org/W4417222493 |
| fwci | |
| type | preprint |
| title | Skeletonization Quality Evaluation: Geometric Metrics for Point Cloud Analysis in Robotics |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2504.00032 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2504.00032 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2504.00032 |
| locations[1].id | doi:10.48550/arxiv.2504.00032 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2504.00032 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5039712604 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8972-4042 |
| authorships[0].author.display_name | Qingmeng Wen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wen, Qingmeng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5067850699 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2094-5680 |
| authorships[1].author.display_name | Yu‐Kun Lai |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lai, Yu-Kun |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5068175770 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8968-9902 |
| authorships[2].author.display_name | Ze Ji |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ji, Ze |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5018428337 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9829-3144 |
| authorships[3].author.display_name | Seyed Amir Tafrishi |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Tafrishi, Seyed Amir |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2504.00032 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Skeletonization Quality Evaluation: Geometric Metrics for Point Cloud Analysis in Robotics |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-11T08:00:07.428982 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2504.00032 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2504.00032 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2504.00032 |
| primary_location.id | pmh:oai:arXiv.org:2504.00032 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2504.00032 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2504.00032 |
| publication_date | 2025-03-29 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 2, 82 |
| abstract_inverted_index.It | 18 |
| abstract_inverted_index.We | 74 |
| abstract_inverted_index.an | 15, 107 |
| abstract_inverted_index.in | 9, 33 |
| abstract_inverted_index.is | 1, 38 |
| abstract_inverted_index.of | 60, 129 |
| abstract_inverted_index.on | 48 |
| abstract_inverted_index.to | 13, 54, 86, 100, 110, 115 |
| abstract_inverted_index.we | 105, 123 |
| abstract_inverted_index.and | 50, 72, 117, 127 |
| abstract_inverted_index.for | 5, 94 |
| abstract_inverted_index.has | 19 |
| abstract_inverted_index.the | 10, 57, 112, 125, 130 |
| abstract_inverted_index.This | 45 |
| abstract_inverted_index.been | 31 |
| abstract_inverted_index.data | 93 |
| abstract_inverted_index.from | 97, 135 |
| abstract_inverted_index.have | 30 |
| abstract_inverted_index.tool | 4, 109 |
| abstract_inverted_index.with | 41, 81 |
| abstract_inverted_index.work | 46 |
| abstract_inverted_index.along | 80 |
| abstract_inverted_index.cloud | 62, 92 |
| abstract_inverted_index.found | 20 |
| abstract_inverted_index.point | 61, 91 |
| abstract_inverted_index.robot | 102 |
| abstract_inverted_index.score | 56 |
| abstract_inverted_index.shape | 6 |
| abstract_inverted_index.their | 36, 119 |
| abstract_inverted_index.these | 76 |
| abstract_inverted_index.across | 22, 64 |
| abstract_inverted_index.assess | 124 |
| abstract_inverted_index.enable | 111 |
| abstract_inverted_index.metric | 78 |
| abstract_inverted_index.mobile | 101 |
| abstract_inverted_index.object | 98 |
| abstract_inverted_index.rarely | 39 |
| abstract_inverted_index.recent | 34 |
| abstract_inverted_index.refine | 118 |
| abstract_inverted_index.rooted | 8 |
| abstract_inverted_index.shapes | 63 |
| abstract_inverted_index.years, | 35 |
| abstract_inverted_index.analyze | 87 |
| abstract_inverted_index.focuses | 47 |
| abstract_inverted_index.methods | 134 |
| abstract_inverted_index.models. | 121 |
| abstract_inverted_index.provide | 106 |
| abstract_inverted_index.results | 59 |
| abstract_inverted_index.robotic | 137 |
| abstract_inverted_index.scoring | 84 |
| abstract_inverted_index.studied | 32 |
| abstract_inverted_index.various | 23, 136 |
| abstract_inverted_index.Although | 27 |
| abstract_inverted_index.Finally, | 122 |
| abstract_inverted_index.aspects, | 66 |
| abstract_inverted_index.defining | 49 |
| abstract_inverted_index.detailed | 42 |
| abstract_inverted_index.domains, | 24 |
| abstract_inverted_index.evaluate | 116 |
| abstract_inverted_index.inherent | 11 |
| abstract_inverted_index.instinct | 12 |
| abstract_inverted_index.multiple | 65 |
| abstract_inverted_index.object's | 16 |
| abstract_inverted_index.outcomes | 89 |
| abstract_inverted_index.powerful | 3 |
| abstract_inverted_index.proposed | 131 |
| abstract_inverted_index.research | 113 |
| abstract_inverted_index.skeleton | 120 |
| abstract_inverted_index.analysis, | 7 |
| abstract_inverted_index.community | 114 |
| abstract_inverted_index.different | 95 |
| abstract_inverted_index.framework | 85 |
| abstract_inverted_index.geometric | 52, 132 |
| abstract_inverted_index.including | 25, 67 |
| abstract_inverted_index.introduce | 75 |
| abstract_inverted_index.numerical | 43, 83 |
| abstract_inverted_index.robotics. | 26 |
| abstract_inverted_index.algorithms | 29 |
| abstract_inverted_index.concerning | 90 |
| abstract_inverted_index.evaluation | 133 |
| abstract_inverted_index.properties | 53 |
| abstract_inverted_index.quantified | 40 |
| abstract_inverted_index.scenarios, | 96 |
| abstract_inverted_index.understand | 14 |
| abstract_inverted_index.definitions | 79 |
| abstract_inverted_index.morphology. | 17 |
| abstract_inverted_index.navigation. | 103 |
| abstract_inverted_index.open-source | 108 |
| abstract_inverted_index.performance | 37, 126 |
| abstract_inverted_index.quantifying | 51 |
| abstract_inverted_index.sensitivity | 128 |
| abstract_inverted_index.similarity, | 69 |
| abstract_inverted_index.smoothness. | 73 |
| abstract_inverted_index.topological | 68 |
| abstract_inverted_index.applications | 21 |
| abstract_inverted_index.boundedness, | 70 |
| abstract_inverted_index.evaluations. | 44 |
| abstract_inverted_index.manipulation | 99 |
| abstract_inverted_index.Additionally, | 104 |
| abstract_inverted_index.applications. | 138 |
| abstract_inverted_index.centeredness, | 71 |
| abstract_inverted_index.representative | 77 |
| abstract_inverted_index.systematically | 55 |
| abstract_inverted_index.Skeletonization | 0 |
| abstract_inverted_index.skeletonization | 28, 58, 88 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |