Skewness-Adjusted Bootstrap Confidence Intervals and Confidence Bands for Impulse Response Functions Article Swipe
Daniel Grabowski
,
Anna Staszewska‐Bystrova
,
Peter Winker
·
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.17192/es2024.0563
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.17192/es2024.0563
This article investigates the construction of skewness-adjusted con�dence intervals and joint confidence bands for impulse response functions from vector autoregressive models. Three different implementations of the skewness adjustment are investigated. The methods are based on a bootstrap algorithm that adjusts mean and skewness of the bootstrap distribution of the autoregressive coeffcients before the impulse response functions are computed. Using extensive Monte Carlo simulations, the methods are shown to improve the coverage accuracy in small and medium sized samples and for unit root processes for both known and unknown lag orders.
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://ideas.repec.org/p/mar/magkse/201810.html
- OA Status
- green
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W3119459618
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3119459618Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.17192/es2024.0563Digital Object Identifier
- Title
-
Skewness-Adjusted Bootstrap Confidence Intervals and Confidence Bands for Impulse Response FunctionsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-19Full publication date if available
- Authors
-
Daniel Grabowski, Anna Staszewska‐Bystrova, Peter WinkerList of authors in order
- Landing page
-
https://ideas.repec.org/p/mar/magkse/201810.htmlPublisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.17192/es2024.0563Direct OA link when available
- Concepts
-
Skewness, Confidence interval, Autoregressive model, Statistics, Impulse response, Monte Carlo method, Mathematics, Robust confidence intervals, Unit root, Econometrics, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3119459618 |
|---|---|
| doi | https://doi.org/10.17192/es2024.0563 |
| ids.doi | https://doi.org/10.17192/es2024.0563 |
| ids.mag | 3119459618 |
| ids.openalex | https://openalex.org/W3119459618 |
| fwci | 0.0 |
| type | article |
| title | Skewness-Adjusted Bootstrap Confidence Intervals and Confidence Bands for Impulse Response Functions |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10136 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.974399983882904 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Statistical Methods and Inference |
| topics[1].id | https://openalex.org/T11918 |
| topics[1].field.id | https://openalex.org/fields/18 |
| topics[1].field.display_name | Decision Sciences |
| topics[1].score | 0.9104999899864197 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1803 |
| topics[1].subfield.display_name | Management Science and Operations Research |
| topics[1].display_name | Forecasting Techniques and Applications |
| topics[2].id | https://openalex.org/T10007 |
| topics[2].field.id | https://openalex.org/fields/20 |
| topics[2].field.display_name | Economics, Econometrics and Finance |
| topics[2].score | 0.9050999879837036 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2000 |
| topics[2].subfield.display_name | General Economics, Econometrics and Finance |
| topics[2].display_name | Monetary Policy and Economic Impact |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C122342681 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8850648999214172 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q330828 |
| concepts[0].display_name | Skewness |
| concepts[1].id | https://openalex.org/C44249647 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7809221744537354 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q208498 |
| concepts[1].display_name | Confidence interval |
| concepts[2].id | https://openalex.org/C159877910 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7595176100730896 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2202883 |
| concepts[2].display_name | Autoregressive model |
| concepts[3].id | https://openalex.org/C105795698 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6582151651382446 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[3].display_name | Statistics |
| concepts[4].id | https://openalex.org/C72279823 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6298048496246338 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1139726 |
| concepts[4].display_name | Impulse response |
| concepts[5].id | https://openalex.org/C19499675 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6281448006629944 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q232207 |
| concepts[5].display_name | Monte Carlo method |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.5438133478164673 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| concepts[7].id | https://openalex.org/C66520545 |
| concepts[7].level | 3 |
| concepts[7].score | 0.503332793712616 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7353538 |
| concepts[7].display_name | Robust confidence intervals |
| concepts[8].id | https://openalex.org/C195561663 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4460938572883606 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1307899 |
| concepts[8].display_name | Unit root |
| concepts[9].id | https://openalex.org/C149782125 |
| concepts[9].level | 1 |
| concepts[9].score | 0.41340315341949463 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[9].display_name | Econometrics |
| concepts[10].id | https://openalex.org/C134306372 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[10].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/skewness |
| keywords[0].score | 0.8850648999214172 |
| keywords[0].display_name | Skewness |
| keywords[1].id | https://openalex.org/keywords/confidence-interval |
| keywords[1].score | 0.7809221744537354 |
| keywords[1].display_name | Confidence interval |
| keywords[2].id | https://openalex.org/keywords/autoregressive-model |
| keywords[2].score | 0.7595176100730896 |
| keywords[2].display_name | Autoregressive model |
| keywords[3].id | https://openalex.org/keywords/statistics |
| keywords[3].score | 0.6582151651382446 |
| keywords[3].display_name | Statistics |
| keywords[4].id | https://openalex.org/keywords/impulse-response |
| keywords[4].score | 0.6298048496246338 |
| keywords[4].display_name | Impulse response |
| keywords[5].id | https://openalex.org/keywords/monte-carlo-method |
| keywords[5].score | 0.6281448006629944 |
| keywords[5].display_name | Monte Carlo method |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.5438133478164673 |
| keywords[6].display_name | Mathematics |
| keywords[7].id | https://openalex.org/keywords/robust-confidence-intervals |
| keywords[7].score | 0.503332793712616 |
| keywords[7].display_name | Robust confidence intervals |
| keywords[8].id | https://openalex.org/keywords/unit-root |
| keywords[8].score | 0.4460938572883606 |
| keywords[8].display_name | Unit root |
| keywords[9].id | https://openalex.org/keywords/econometrics |
| keywords[9].score | 0.41340315341949463 |
| keywords[9].display_name | Econometrics |
| language | en |
| locations[0].id | mag:3119459618 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://ideas.repec.org/p/mar/magkse/201810.html |
| locations[1].id | mag:3122366161 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401271 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | RePEc: Research Papers in Economics |
| locations[1].source.host_organization | https://openalex.org/I77793887 |
| locations[1].source.host_organization_name | Federal Reserve Bank of St. Louis |
| locations[1].source.host_organization_lineage | https://openalex.org/I77793887 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | RePEc: Research Papers in Economics |
| locations[1].landing_page_url | https://EconPapers.repec.org/RePEc:mar:magkse:201810 |
| locations[2].id | pmh:oai:dspace.uni.lodz.pl:11089/24232 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401347 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | University of Lodz Repository (University of Łódź) |
| locations[2].source.host_organization | https://openalex.org/I34250744 |
| locations[2].source.host_organization_name | University of Łódź |
| locations[2].source.host_organization_lineage | https://openalex.org/I34250744 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Working Paper |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | http://hdl.handle.net/11089/24232 |
| locations[3].id | pmh:oai:econstor.eu:10419/175861 |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306401696 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Econstor (Econstor) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | doc-type:workingPaper |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | http://hdl.handle.net/10419/175861 |
| locations[4].id | pmh:oai:econstor.eu:10419/181590 |
| locations[4].is_oa | False |
| locations[4].source.id | https://openalex.org/S4306401696 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | Econstor (Econstor) |
| locations[4].source.host_organization | |
| locations[4].source.host_organization_name | |
| locations[4].license | |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | doc-type:conferenceObject |
| locations[4].license_id | |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | |
| locations[4].landing_page_url | http://hdl.handle.net/10419/181590 |
| locations[5].id | doi:10.17192/es2024.0563 |
| locations[5].is_oa | True |
| locations[5].source.id | https://openalex.org/S7407052995 |
| locations[5].source.type | repository |
| locations[5].source.is_oa | False |
| locations[5].source.issn_l | |
| locations[5].source.is_core | False |
| locations[5].source.is_in_doaj | False |
| locations[5].source.display_name | data_UMR |
| locations[5].source.host_organization | |
| locations[5].source.host_organization_name | |
| locations[5].license | public-domain |
| locations[5].pdf_url | |
| locations[5].version | |
| locations[5].raw_type | article-journal |
| locations[5].license_id | https://openalex.org/licenses/public-domain |
| locations[5].is_accepted | False |
| locations[5].is_published | |
| locations[5].raw_source_name | |
| locations[5].landing_page_url | https://doi.org/10.17192/es2024.0563 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5039316335 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6446-016X |
| authorships[0].author.display_name | Daniel Grabowski |
| authorships[0].countries | DE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I200763008, https://openalex.org/I4210148049 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Economics, University of Giessen, Giessen, Germany |
| authorships[0].institutions[0].id | https://openalex.org/I4210148049 |
| authorships[0].institutions[0].ror | https://ror.org/03kzgcv48 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210148049 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | Giessen School of Theology |
| authorships[0].institutions[1].id | https://openalex.org/I200763008 |
| authorships[0].institutions[1].ror | https://ror.org/033eqas34 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I200763008 |
| authorships[0].institutions[1].country_code | DE |
| authorships[0].institutions[1].display_name | Justus-Liebig-Universität Gießen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Daniel Grabowski |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Economics, University of Giessen, Giessen, Germany |
| authorships[1].author.id | https://openalex.org/A5011567390 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3941-4986 |
| authorships[1].author.display_name | Anna Staszewska‐Bystrova |
| authorships[1].countries | PL |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I34250744 |
| authorships[1].affiliations[0].raw_affiliation_string | University of Lodz, Lodz (Poland) |
| authorships[1].institutions[0].id | https://openalex.org/I34250744 |
| authorships[1].institutions[0].ror | https://ror.org/05cq64r17 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I34250744 |
| authorships[1].institutions[0].country_code | PL |
| authorships[1].institutions[0].display_name | University of Łódź |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Anna Staszewska-Bystrova |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of Lodz, Lodz (Poland) |
| authorships[2].author.id | https://openalex.org/A5086357086 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3412-4207 |
| authorships[2].author.display_name | Peter Winker |
| authorships[2].countries | DE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I200763008, https://openalex.org/I4210148049 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Economics, University of Giessen, Giessen, Germany |
| authorships[2].institutions[0].id | https://openalex.org/I4210148049 |
| authorships[2].institutions[0].ror | https://ror.org/03kzgcv48 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210148049 |
| authorships[2].institutions[0].country_code | DE |
| authorships[2].institutions[0].display_name | Giessen School of Theology |
| authorships[2].institutions[1].id | https://openalex.org/I200763008 |
| authorships[2].institutions[1].ror | https://ror.org/033eqas34 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I200763008 |
| authorships[2].institutions[1].country_code | DE |
| authorships[2].institutions[1].display_name | Justus-Liebig-Universität Gießen |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Peter Winker |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Economics, University of Giessen, Giessen, Germany |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.17192/es2024.0563 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Skewness-Adjusted Bootstrap Confidence Intervals and Confidence Bands for Impulse Response Functions |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10136 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.974399983882904 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Statistical Methods and Inference |
| related_works | https://openalex.org/W3122366161, https://openalex.org/W3023904636, https://openalex.org/W2349064882, https://openalex.org/W2129205689, https://openalex.org/W2178649350, https://openalex.org/W2383147389, https://openalex.org/W1606683013, https://openalex.org/W3122670796, https://openalex.org/W2138918414, https://openalex.org/W2619339134, https://openalex.org/W2810389932, https://openalex.org/W908186870, https://openalex.org/W1987574265, https://openalex.org/W1425340397, https://openalex.org/W2261552459, https://openalex.org/W105260942, https://openalex.org/W2340351040, https://openalex.org/W3121209853, https://openalex.org/W1490872786, https://openalex.org/W2195107770 |
| cited_by_count | 0 |
| locations_count | 6 |
| best_oa_location.id | doi:10.17192/es2024.0563 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S7407052995 |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | data_UMR |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | public-domain |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | article-journal |
| best_oa_location.license_id | https://openalex.org/licenses/public-domain |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.17192/es2024.0563 |
| primary_location.id | mag:3119459618 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://ideas.repec.org/p/mar/magkse/201810.html |
| publication_date | 2024-01-19 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 35 |
| abstract_inverted_index.in | 72 |
| abstract_inverted_index.of | 5, 24, 43, 47 |
| abstract_inverted_index.on | 34 |
| abstract_inverted_index.to | 67 |
| abstract_inverted_index.The | 30 |
| abstract_inverted_index.and | 9, 41, 74, 78, 86 |
| abstract_inverted_index.are | 28, 32, 56, 65 |
| abstract_inverted_index.for | 13, 79, 83 |
| abstract_inverted_index.lag | 88 |
| abstract_inverted_index.the | 3, 25, 44, 48, 52, 63, 69 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.both | 84 |
| abstract_inverted_index.from | 17 |
| abstract_inverted_index.mean | 40 |
| abstract_inverted_index.root | 81 |
| abstract_inverted_index.that | 38 |
| abstract_inverted_index.unit | 80 |
| abstract_inverted_index.Carlo | 61 |
| abstract_inverted_index.Monte | 60 |
| abstract_inverted_index.Three | 21 |
| abstract_inverted_index.Using | 58 |
| abstract_inverted_index.bands | 12 |
| abstract_inverted_index.based | 33 |
| abstract_inverted_index.joint | 10 |
| abstract_inverted_index.known | 85 |
| abstract_inverted_index.shown | 66 |
| abstract_inverted_index.sized | 76 |
| abstract_inverted_index.small | 73 |
| abstract_inverted_index.before | 51 |
| abstract_inverted_index.medium | 75 |
| abstract_inverted_index.vector | 18 |
| abstract_inverted_index.adjusts | 39 |
| abstract_inverted_index.article | 1 |
| abstract_inverted_index.improve | 68 |
| abstract_inverted_index.impulse | 14, 53 |
| abstract_inverted_index.methods | 31, 64 |
| abstract_inverted_index.models. | 20 |
| abstract_inverted_index.orders. | 89 |
| abstract_inverted_index.samples | 77 |
| abstract_inverted_index.unknown | 87 |
| abstract_inverted_index.accuracy | 71 |
| abstract_inverted_index.coverage | 70 |
| abstract_inverted_index.response | 15, 54 |
| abstract_inverted_index.skewness | 26, 42 |
| abstract_inverted_index.algorithm | 37 |
| abstract_inverted_index.bootstrap | 36, 45 |
| abstract_inverted_index.computed. | 57 |
| abstract_inverted_index.different | 22 |
| abstract_inverted_index.extensive | 59 |
| abstract_inverted_index.functions | 16, 55 |
| abstract_inverted_index.intervals | 8 |
| abstract_inverted_index.processes | 82 |
| abstract_inverted_index.adjustment | 27 |
| abstract_inverted_index.confidence | 11 |
| abstract_inverted_index.coeffcients | 50 |
| abstract_inverted_index.con�dence | 7 |
| abstract_inverted_index.construction | 4 |
| abstract_inverted_index.distribution | 46 |
| abstract_inverted_index.investigates | 2 |
| abstract_inverted_index.simulations, | 62 |
| abstract_inverted_index.investigated. | 29 |
| abstract_inverted_index.autoregressive | 19, 49 |
| abstract_inverted_index.implementations | 23 |
| abstract_inverted_index.skewness-adjusted | 6 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.00155938 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |