Skull fracture detection for point-of-care diagnostics using microwave technique Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.23996/fjhw.155481
The possibility to detect severity of skull fractures outside the hospital already in the accident location would be a promising eHealth application. Such a point-of-care type of device would smoothen the patients’ path to the treatment after the accident. Additionally, frequent and safe monitoring of the healing process of skull fractures in smaller healthcare centers, as a new telemedicine solution, would enable early detection of potential problems. Microwave technique has shown significant potential for portable monitoring devices since it enables safe, low-cost, and high accuracy detectors. This paper has three research objectives: (1) to investigate the potential of microwave techniques for detecting common skull fracture types using antennas embedded in a small, portable monitoring device, (2) to evaluate optimal frequency ranges for skull fracture detection, and (3) to examine the impact of scalp thickness on fracture detectability. The research is carried out using electromagnetic simulation software with human head models resembling different scalp thicknesses and flexible antennas operating at 2.5–10 GHz. In the evaluations, scattering parameters are analyzed with the head models both with and without the fractures. The evaluation results show that different types of skull fractures can be detected with microwave technique. Fractures cause differences in scattering parameters ranging from 2 dB to 12 dB, depending on the type of fracture. The most optimal frequency ranges for detection are 3–5 GHz and 9 GHz. The thickness of the scalp impacts the detectability of skull fractures, yet fractures remain detectable even with the model with thicker scalp. These findings support the potential of microwave technique for developing portable, point-of-care devices for timely and precise skull fracture pre-diagnosis and frequent monitoring of the healing process. This approach particularly benefits young children, for whom conventional screening methods may pose more significant challenges.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.23996/fjhw.155481
- https://journal.fi/finjehew/article/download/155481/104362
- OA Status
- diamond
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409252440
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409252440Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.23996/fjhw.155481Digital Object Identifier
- Title
-
Skull fracture detection for point-of-care diagnostics using microwave techniqueWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-08Full publication date if available
- Authors
-
Mariella Särestöniemi, Daljeet Singh, Jarmo Reponen, Mikael von und zu Fraunberg, Teemu MyllyläList of authors in order
- Landing page
-
https://doi.org/10.23996/fjhw.155481Publisher landing page
- PDF URL
-
https://journal.fi/finjehew/article/download/155481/104362Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://journal.fi/finjehew/article/download/155481/104362Direct OA link when available
- Concepts
-
Skull, Fracture (geology), Point of care, Point (geometry), Materials science, Medicine, Computer science, Biomedical engineering, Pathology, Composite material, Surgery, Mathematics, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409252440 |
|---|---|
| doi | https://doi.org/10.23996/fjhw.155481 |
| ids.doi | https://doi.org/10.23996/fjhw.155481 |
| ids.openalex | https://openalex.org/W4409252440 |
| fwci | 4.63396625 |
| type | article |
| title | Skull fracture detection for point-of-care diagnostics using microwave technique |
| biblio.issue | 1 |
| biblio.volume | 17 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11775 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.8858000040054321 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | COVID-19 diagnosis using AI |
| topics[1].id | https://openalex.org/T10658 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.8532999753952026 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2713 |
| topics[1].subfield.display_name | Epidemiology |
| topics[1].display_name | Bone fractures and treatments |
| topics[2].id | https://openalex.org/T12439 |
| topics[2].field.id | https://openalex.org/fields/35 |
| topics[2].field.display_name | Dentistry |
| topics[2].score | 0.8345000147819519 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3500 |
| topics[2].subfield.display_name | General Dentistry |
| topics[2].display_name | Dental Research and COVID-19 |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2779300802 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5059594511985779 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q13147 |
| concepts[0].display_name | Skull |
| concepts[1].id | https://openalex.org/C43369102 |
| concepts[1].level | 2 |
| concepts[1].score | 0.4813181161880493 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2307625 |
| concepts[1].display_name | Fracture (geology) |
| concepts[2].id | https://openalex.org/C51915194 |
| concepts[2].level | 2 |
| concepts[2].score | 0.44843995571136475 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q17075487 |
| concepts[2].display_name | Point of care |
| concepts[3].id | https://openalex.org/C28719098 |
| concepts[3].level | 2 |
| concepts[3].score | 0.41792789101600647 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q44946 |
| concepts[3].display_name | Point (geometry) |
| concepts[4].id | https://openalex.org/C192562407 |
| concepts[4].level | 0 |
| concepts[4].score | 0.3926708996295929 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[4].display_name | Materials science |
| concepts[5].id | https://openalex.org/C71924100 |
| concepts[5].level | 0 |
| concepts[5].score | 0.338795006275177 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[5].display_name | Medicine |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.32898086309432983 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C136229726 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3234201669692993 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q327092 |
| concepts[7].display_name | Biomedical engineering |
| concepts[8].id | https://openalex.org/C142724271 |
| concepts[8].level | 1 |
| concepts[8].score | 0.17981505393981934 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[8].display_name | Pathology |
| concepts[9].id | https://openalex.org/C159985019 |
| concepts[9].level | 1 |
| concepts[9].score | 0.11318734288215637 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[9].display_name | Composite material |
| concepts[10].id | https://openalex.org/C141071460 |
| concepts[10].level | 1 |
| concepts[10].score | 0.1111936867237091 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q40821 |
| concepts[10].display_name | Surgery |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.10024642944335938 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C2524010 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[12].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/skull |
| keywords[0].score | 0.5059594511985779 |
| keywords[0].display_name | Skull |
| keywords[1].id | https://openalex.org/keywords/fracture |
| keywords[1].score | 0.4813181161880493 |
| keywords[1].display_name | Fracture (geology) |
| keywords[2].id | https://openalex.org/keywords/point-of-care |
| keywords[2].score | 0.44843995571136475 |
| keywords[2].display_name | Point of care |
| keywords[3].id | https://openalex.org/keywords/point |
| keywords[3].score | 0.41792789101600647 |
| keywords[3].display_name | Point (geometry) |
| keywords[4].id | https://openalex.org/keywords/materials-science |
| keywords[4].score | 0.3926708996295929 |
| keywords[4].display_name | Materials science |
| keywords[5].id | https://openalex.org/keywords/medicine |
| keywords[5].score | 0.338795006275177 |
| keywords[5].display_name | Medicine |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.32898086309432983 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/biomedical-engineering |
| keywords[7].score | 0.3234201669692993 |
| keywords[7].display_name | Biomedical engineering |
| keywords[8].id | https://openalex.org/keywords/pathology |
| keywords[8].score | 0.17981505393981934 |
| keywords[8].display_name | Pathology |
| keywords[9].id | https://openalex.org/keywords/composite-material |
| keywords[9].score | 0.11318734288215637 |
| keywords[9].display_name | Composite material |
| keywords[10].id | https://openalex.org/keywords/surgery |
| keywords[10].score | 0.1111936867237091 |
| keywords[10].display_name | Surgery |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.10024642944335938 |
| keywords[11].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.23996/fjhw.155481 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764668752 |
| locations[0].source.issn | 1798-0798 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1798-0798 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Finnish Journal of eHealth and eWelfare |
| locations[0].source.host_organization | https://openalex.org/P4310317070 |
| locations[0].source.host_organization_name | Informaatiotutkimuksen yhdistys ITY |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310317070 |
| locations[0].source.host_organization_lineage_names | Informaatiotutkimuksen yhdistys ITY |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://journal.fi/finjehew/article/download/155481/104362 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Finnish Journal of eHealth and eWelfare |
| locations[0].landing_page_url | https://doi.org/10.23996/fjhw.155481 |
| locations[1].id | pmh:oai:doaj.org/article:8aaa3f665d5940c18fac6b34012fc8a8 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Finnish Journal of eHealth and eWelfare, Vol 17, Iss 1 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/8aaa3f665d5940c18fac6b34012fc8a8 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5010073710 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6967-1908 |
| authorships[0].author.display_name | Mariella Särestöniemi |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mariella Särestöniemi |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5017728649 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0587-1476 |
| authorships[1].author.display_name | Daljeet Singh |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Daljeet Singh |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5070169373 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2306-3111 |
| authorships[2].author.display_name | Jarmo Reponen |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jarmo Reponen |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5096293920 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Mikael von und zu Fraunberg |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Mikael Von und zu Fraunberg |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5010691356 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3528-2186 |
| authorships[4].author.display_name | Teemu Myllylä |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Teemu Myllylä |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://journal.fi/finjehew/article/download/155481/104362 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Skull fracture detection for point-of-care diagnostics using microwave technique |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11775 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.8858000040054321 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | COVID-19 diagnosis using AI |
| related_works | https://openalex.org/W1996993591, https://openalex.org/W2020061871, https://openalex.org/W2424073895, https://openalex.org/W2368943772, https://openalex.org/W2049611277, https://openalex.org/W2367972372, https://openalex.org/W91146296, https://openalex.org/W2144744678, https://openalex.org/W2068774814, https://openalex.org/W3216787413 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.23996/fjhw.155481 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764668752 |
| best_oa_location.source.issn | 1798-0798 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1798-0798 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Finnish Journal of eHealth and eWelfare |
| best_oa_location.source.host_organization | https://openalex.org/P4310317070 |
| best_oa_location.source.host_organization_name | Informaatiotutkimuksen yhdistys ITY |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310317070 |
| best_oa_location.source.host_organization_lineage_names | Informaatiotutkimuksen yhdistys ITY |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://journal.fi/finjehew/article/download/155481/104362 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Finnish Journal of eHealth and eWelfare |
| best_oa_location.landing_page_url | https://doi.org/10.23996/fjhw.155481 |
| primary_location.id | doi:10.23996/fjhw.155481 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764668752 |
| primary_location.source.issn | 1798-0798 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1798-0798 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Finnish Journal of eHealth and eWelfare |
| primary_location.source.host_organization | https://openalex.org/P4310317070 |
| primary_location.source.host_organization_name | Informaatiotutkimuksen yhdistys ITY |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310317070 |
| primary_location.source.host_organization_lineage_names | Informaatiotutkimuksen yhdistys ITY |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://journal.fi/finjehew/article/download/155481/104362 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Finnish Journal of eHealth and eWelfare |
| primary_location.landing_page_url | https://doi.org/10.23996/fjhw.155481 |
| publication_date | 2025-04-08 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.2 | 202 |
| abstract_inverted_index.9 | 224 |
| abstract_inverted_index.a | 18, 23, 56, 110 |
| abstract_inverted_index.12 | 205 |
| abstract_inverted_index.In | 161 |
| abstract_inverted_index.as | 55 |
| abstract_inverted_index.at | 158 |
| abstract_inverted_index.be | 17, 189 |
| abstract_inverted_index.dB | 203 |
| abstract_inverted_index.in | 12, 51, 109, 197 |
| abstract_inverted_index.is | 139 |
| abstract_inverted_index.it | 78 |
| abstract_inverted_index.of | 5, 26, 44, 48, 64, 97, 131, 185, 211, 228, 234, 253, 271 |
| abstract_inverted_index.on | 134, 208 |
| abstract_inverted_index.to | 2, 33, 93, 116, 127, 204 |
| abstract_inverted_index.(1) | 92 |
| abstract_inverted_index.(2) | 115 |
| abstract_inverted_index.(3) | 126 |
| abstract_inverted_index.GHz | 222 |
| abstract_inverted_index.The | 0, 137, 178, 213, 226 |
| abstract_inverted_index.and | 41, 82, 125, 154, 174, 223, 263, 268 |
| abstract_inverted_index.are | 166, 220 |
| abstract_inverted_index.can | 188 |
| abstract_inverted_index.dB, | 206 |
| abstract_inverted_index.for | 73, 100, 121, 218, 256, 261, 281 |
| abstract_inverted_index.has | 69, 88 |
| abstract_inverted_index.may | 286 |
| abstract_inverted_index.new | 57 |
| abstract_inverted_index.out | 141 |
| abstract_inverted_index.the | 9, 13, 30, 34, 37, 45, 95, 129, 162, 169, 176, 209, 229, 232, 243, 251, 272 |
| abstract_inverted_index.yet | 237 |
| abstract_inverted_index.GHz. | 160, 225 |
| abstract_inverted_index.Such | 22 |
| abstract_inverted_index.This | 86, 275 |
| abstract_inverted_index.both | 172 |
| abstract_inverted_index.even | 241 |
| abstract_inverted_index.from | 201 |
| abstract_inverted_index.head | 148, 170 |
| abstract_inverted_index.high | 83 |
| abstract_inverted_index.more | 288 |
| abstract_inverted_index.most | 214 |
| abstract_inverted_index.path | 32 |
| abstract_inverted_index.pose | 287 |
| abstract_inverted_index.safe | 42 |
| abstract_inverted_index.show | 181 |
| abstract_inverted_index.that | 182 |
| abstract_inverted_index.type | 25, 210 |
| abstract_inverted_index.whom | 282 |
| abstract_inverted_index.with | 146, 168, 173, 191, 242, 245 |
| abstract_inverted_index.3–5 | 221 |
| abstract_inverted_index.These | 248 |
| abstract_inverted_index.after | 36 |
| abstract_inverted_index.cause | 195 |
| abstract_inverted_index.early | 62 |
| abstract_inverted_index.human | 147 |
| abstract_inverted_index.model | 244 |
| abstract_inverted_index.paper | 87 |
| abstract_inverted_index.safe, | 80 |
| abstract_inverted_index.scalp | 132, 152, 230 |
| abstract_inverted_index.shown | 70 |
| abstract_inverted_index.since | 77 |
| abstract_inverted_index.skull | 6, 49, 103, 122, 186, 235, 265 |
| abstract_inverted_index.three | 89 |
| abstract_inverted_index.types | 105, 184 |
| abstract_inverted_index.using | 106, 142 |
| abstract_inverted_index.would | 16, 28, 60 |
| abstract_inverted_index.young | 279 |
| abstract_inverted_index.common | 102 |
| abstract_inverted_index.detect | 3 |
| abstract_inverted_index.device | 27 |
| abstract_inverted_index.enable | 61 |
| abstract_inverted_index.impact | 130 |
| abstract_inverted_index.models | 149, 171 |
| abstract_inverted_index.ranges | 120, 217 |
| abstract_inverted_index.remain | 239 |
| abstract_inverted_index.scalp. | 247 |
| abstract_inverted_index.small, | 111 |
| abstract_inverted_index.timely | 262 |
| abstract_inverted_index.already | 11 |
| abstract_inverted_index.carried | 140 |
| abstract_inverted_index.device, | 114 |
| abstract_inverted_index.devices | 76, 260 |
| abstract_inverted_index.eHealth | 20 |
| abstract_inverted_index.enables | 79 |
| abstract_inverted_index.examine | 128 |
| abstract_inverted_index.healing | 46, 273 |
| abstract_inverted_index.impacts | 231 |
| abstract_inverted_index.methods | 285 |
| abstract_inverted_index.optimal | 118, 215 |
| abstract_inverted_index.outside | 8 |
| abstract_inverted_index.precise | 264 |
| abstract_inverted_index.process | 47 |
| abstract_inverted_index.ranging | 200 |
| abstract_inverted_index.results | 180 |
| abstract_inverted_index.smaller | 52 |
| abstract_inverted_index.support | 250 |
| abstract_inverted_index.thicker | 246 |
| abstract_inverted_index.without | 175 |
| abstract_inverted_index.2.5–10 | 159 |
| abstract_inverted_index.accident | 14 |
| abstract_inverted_index.accuracy | 84 |
| abstract_inverted_index.analyzed | 167 |
| abstract_inverted_index.antennas | 107, 156 |
| abstract_inverted_index.approach | 276 |
| abstract_inverted_index.benefits | 278 |
| abstract_inverted_index.centers, | 54 |
| abstract_inverted_index.detected | 190 |
| abstract_inverted_index.embedded | 108 |
| abstract_inverted_index.evaluate | 117 |
| abstract_inverted_index.findings | 249 |
| abstract_inverted_index.flexible | 155 |
| abstract_inverted_index.fracture | 104, 123, 135, 266 |
| abstract_inverted_index.frequent | 40, 269 |
| abstract_inverted_index.hospital | 10 |
| abstract_inverted_index.location | 15 |
| abstract_inverted_index.portable | 74, 112 |
| abstract_inverted_index.process. | 274 |
| abstract_inverted_index.research | 90, 138 |
| abstract_inverted_index.severity | 4 |
| abstract_inverted_index.smoothen | 29 |
| abstract_inverted_index.software | 145 |
| abstract_inverted_index.Fractures | 194 |
| abstract_inverted_index.Microwave | 67 |
| abstract_inverted_index.accident. | 38 |
| abstract_inverted_index.children, | 280 |
| abstract_inverted_index.depending | 207 |
| abstract_inverted_index.detecting | 101 |
| abstract_inverted_index.detection | 63, 219 |
| abstract_inverted_index.different | 151, 183 |
| abstract_inverted_index.fracture. | 212 |
| abstract_inverted_index.fractures | 7, 50, 187, 238 |
| abstract_inverted_index.frequency | 119, 216 |
| abstract_inverted_index.low-cost, | 81 |
| abstract_inverted_index.microwave | 98, 192, 254 |
| abstract_inverted_index.operating | 157 |
| abstract_inverted_index.portable, | 258 |
| abstract_inverted_index.potential | 65, 72, 96, 252 |
| abstract_inverted_index.problems. | 66 |
| abstract_inverted_index.promising | 19 |
| abstract_inverted_index.screening | 284 |
| abstract_inverted_index.solution, | 59 |
| abstract_inverted_index.technique | 68, 255 |
| abstract_inverted_index.thickness | 133, 227 |
| abstract_inverted_index.treatment | 35 |
| abstract_inverted_index.detectable | 240 |
| abstract_inverted_index.detection, | 124 |
| abstract_inverted_index.detectors. | 85 |
| abstract_inverted_index.developing | 257 |
| abstract_inverted_index.evaluation | 179 |
| abstract_inverted_index.fractures, | 236 |
| abstract_inverted_index.fractures. | 177 |
| abstract_inverted_index.healthcare | 53 |
| abstract_inverted_index.monitoring | 43, 75, 113, 270 |
| abstract_inverted_index.parameters | 165, 199 |
| abstract_inverted_index.resembling | 150 |
| abstract_inverted_index.scattering | 164, 198 |
| abstract_inverted_index.simulation | 144 |
| abstract_inverted_index.technique. | 193 |
| abstract_inverted_index.techniques | 99 |
| abstract_inverted_index.challenges. | 290 |
| abstract_inverted_index.differences | 196 |
| abstract_inverted_index.investigate | 94 |
| abstract_inverted_index.objectives: | 91 |
| abstract_inverted_index.patients’ | 31 |
| abstract_inverted_index.possibility | 1 |
| abstract_inverted_index.significant | 71, 289 |
| abstract_inverted_index.thicknesses | 153 |
| abstract_inverted_index.application. | 21 |
| abstract_inverted_index.conventional | 283 |
| abstract_inverted_index.evaluations, | 163 |
| abstract_inverted_index.particularly | 277 |
| abstract_inverted_index.telemedicine | 58 |
| abstract_inverted_index.Additionally, | 39 |
| abstract_inverted_index.detectability | 233 |
| abstract_inverted_index.point-of-care | 24, 259 |
| abstract_inverted_index.pre-diagnosis | 267 |
| abstract_inverted_index.detectability. | 136 |
| abstract_inverted_index.electromagnetic | 143 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.85004431 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |