SLAP: a Split Latency Adaptive VLIW Pipeline Architecture Which Enables on-The-Fly Variable SIMD Vector-Length Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1109/icassp39728.2021.9413371
Over the last decade the relative latency of access to shared memory by multicore increased as wire resistance dominated latency and low wire density layout pushed multiport memories farther away from their ports. Various techniques were deployed to improve average memory access latencies, such as speculative pre-fetching and branch-prediction, often leading to high variance in execution time which is unacceptable in real time systems. Smart DMAs can be used to directly copy data into a layer1 SRAM, but with overhead. The VLIW architecture, the de facto signal processing engine, suffers badly from a breakdown in lockstep execution of scalar and vector instructions. We describe the Split Latency Adaptive Pipeline (SLAP) VLIW architecture, a cache performance improvement technology that requires zero change to object code, while removing smart DMAs and their overhead. SLAP builds on the Decoupled Access and Execute concept by 1) breaking lockstep execution of functional units, 2) enabling variable vector length for variable data level parallelism, and 3) adding a novel triangular load mechanism. We discuss the SLAP architecture and demonstrate the performance benefits on real traces from a wireless baseband system (where even the most compute intensive functions suffer from an Amdahls law limitation due to a mixture of scalar and vector processing).
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1109/icassp39728.2021.9413371
- OA Status
- green
- References
- 12
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W3135195651
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3135195651Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/icassp39728.2021.9413371Digital Object Identifier
- Title
-
SLAP: a Split Latency Adaptive VLIW Pipeline Architecture Which Enables on-The-Fly Variable SIMD Vector-LengthWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-05-13Full publication date if available
- Authors
-
Ashish Shrivastava, Alan Gatherer, Tong Sun, Sushma Wokhlu, Alex ChandraList of authors in order
- Landing page
-
https://doi.org/10.1109/icassp39728.2021.9413371Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2102.13301Direct OA link when available
- Concepts
-
Computer science, Very long instruction word, Parallel computing, Cache, Latency (audio), SIMD, Pipeline (software), Embedded system, Operating system, TelecommunicationsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
12Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3135195651 |
|---|---|
| doi | https://doi.org/10.1109/icassp39728.2021.9413371 |
| ids.doi | https://doi.org/10.1109/icassp39728.2021.9413371 |
| ids.mag | 3135195651 |
| ids.openalex | https://openalex.org/W3135195651 |
| fwci | 0.0 |
| type | preprint |
| title | SLAP: a Split Latency Adaptive VLIW Pipeline Architecture Which Enables on-The-Fly Variable SIMD Vector-Length |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 7872 |
| biblio.first_page | 7868 |
| topics[0].id | https://openalex.org/T10054 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1708 |
| topics[0].subfield.display_name | Hardware and Architecture |
| topics[0].display_name | Parallel Computing and Optimization Techniques |
| topics[1].id | https://openalex.org/T11181 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9998000264167786 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | Advanced Data Storage Technologies |
| topics[2].id | https://openalex.org/T12808 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9997000098228455 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Ferroelectric and Negative Capacitance Devices |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8244754672050476 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C170595534 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8183081150054932 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q249743 |
| concepts[1].display_name | Very long instruction word |
| concepts[2].id | https://openalex.org/C173608175 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5926350355148315 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q232661 |
| concepts[2].display_name | Parallel computing |
| concepts[3].id | https://openalex.org/C115537543 |
| concepts[3].level | 2 |
| concepts[3].score | 0.563372790813446 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q165596 |
| concepts[3].display_name | Cache |
| concepts[4].id | https://openalex.org/C82876162 |
| concepts[4].level | 2 |
| concepts[4].score | 0.48054414987564087 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q17096504 |
| concepts[4].display_name | Latency (audio) |
| concepts[5].id | https://openalex.org/C150552126 |
| concepts[5].level | 2 |
| concepts[5].score | 0.44060182571411133 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q339387 |
| concepts[5].display_name | SIMD |
| concepts[6].id | https://openalex.org/C43521106 |
| concepts[6].level | 2 |
| concepts[6].score | 0.42440104484558105 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2165493 |
| concepts[6].display_name | Pipeline (software) |
| concepts[7].id | https://openalex.org/C149635348 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4113346338272095 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q193040 |
| concepts[7].display_name | Embedded system |
| concepts[8].id | https://openalex.org/C111919701 |
| concepts[8].level | 1 |
| concepts[8].score | 0.1643466353416443 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[8].display_name | Operating system |
| concepts[9].id | https://openalex.org/C76155785 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[9].display_name | Telecommunications |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8244754672050476 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/very-long-instruction-word |
| keywords[1].score | 0.8183081150054932 |
| keywords[1].display_name | Very long instruction word |
| keywords[2].id | https://openalex.org/keywords/parallel-computing |
| keywords[2].score | 0.5926350355148315 |
| keywords[2].display_name | Parallel computing |
| keywords[3].id | https://openalex.org/keywords/cache |
| keywords[3].score | 0.563372790813446 |
| keywords[3].display_name | Cache |
| keywords[4].id | https://openalex.org/keywords/latency |
| keywords[4].score | 0.48054414987564087 |
| keywords[4].display_name | Latency (audio) |
| keywords[5].id | https://openalex.org/keywords/simd |
| keywords[5].score | 0.44060182571411133 |
| keywords[5].display_name | SIMD |
| keywords[6].id | https://openalex.org/keywords/pipeline |
| keywords[6].score | 0.42440104484558105 |
| keywords[6].display_name | Pipeline (software) |
| keywords[7].id | https://openalex.org/keywords/embedded-system |
| keywords[7].score | 0.4113346338272095 |
| keywords[7].display_name | Embedded system |
| keywords[8].id | https://openalex.org/keywords/operating-system |
| keywords[8].score | 0.1643466353416443 |
| keywords[8].display_name | Operating system |
| language | en |
| locations[0].id | doi:10.1109/icassp39728.2021.9413371 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) |
| locations[0].landing_page_url | https://doi.org/10.1109/icassp39728.2021.9413371 |
| locations[1].id | pmh:oai:arXiv.org:2102.13301 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | public-domain |
| locations[1].pdf_url | https://arxiv.org/pdf/2102.13301 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | https://openalex.org/licenses/public-domain |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2102.13301 |
| locations[2].id | doi:10.48550/arxiv.2102.13301 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | public-domain |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/public-domain |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.48550/arxiv.2102.13301 |
| locations[3].id | doi:10.17023/y3hc-f280 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S7407051697 |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | IEEE RESOURCE CENTERS |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://doi.org/10.17023/y3hc-f280 |
| locations[4].id | mag:3135195651 |
| locations[4].is_oa | False |
| locations[4].source | |
| locations[4].license | |
| locations[4].pdf_url | |
| locations[4].version | |
| locations[4].raw_type | |
| locations[4].license_id | |
| locations[4].is_accepted | False |
| locations[4].is_published | |
| locations[4].raw_source_name | |
| locations[4].landing_page_url | |
| indexed_in | arxiv, crossref, datacite |
| authorships[0].author.id | https://openalex.org/A5002740493 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2465-0708 |
| authorships[0].author.display_name | Ashish Shrivastava |
| authorships[0].affiliations[0].raw_affiliation_string | Futurewei Technologies Inc,Wireless Access Lab |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ashish Shrivastava |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Futurewei Technologies Inc,Wireless Access Lab |
| authorships[1].author.id | https://openalex.org/A5002590438 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5937-8599 |
| authorships[1].author.display_name | Alan Gatherer |
| authorships[1].affiliations[0].raw_affiliation_string | Futurewei Technologies Inc,Wireless Access Lab |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Alan Gatherer |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Futurewei Technologies Inc,Wireless Access Lab |
| authorships[2].author.id | https://openalex.org/A5100372581 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3861-8933 |
| authorships[2].author.display_name | Tong Sun |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210160618 |
| authorships[2].affiliations[0].raw_affiliation_string | Futurewei Technologies Inc |
| authorships[2].institutions[0].id | https://openalex.org/I4210160618 |
| authorships[2].institutions[0].ror | https://ror.org/056gzgs71 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I2250955327, https://openalex.org/I4210160618 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | Huawei Technologies (United Kingdom) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Tong Sun |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Futurewei Technologies Inc |
| authorships[3].author.id | https://openalex.org/A5038146132 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Sushma Wokhlu |
| authorships[3].countries | GB |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210160618 |
| authorships[3].affiliations[0].raw_affiliation_string | Futurewei Technologies Inc |
| authorships[3].institutions[0].id | https://openalex.org/I4210160618 |
| authorships[3].institutions[0].ror | https://ror.org/056gzgs71 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I2250955327, https://openalex.org/I4210160618 |
| authorships[3].institutions[0].country_code | GB |
| authorships[3].institutions[0].display_name | Huawei Technologies (United Kingdom) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Sushma Wokhlu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Futurewei Technologies Inc |
| authorships[4].author.id | https://openalex.org/A5028198768 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Alex Chandra |
| authorships[4].countries | GB |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210160618 |
| authorships[4].affiliations[0].raw_affiliation_string | Futurewei Technologies Inc |
| authorships[4].institutions[0].id | https://openalex.org/I4210160618 |
| authorships[4].institutions[0].ror | https://ror.org/056gzgs71 |
| authorships[4].institutions[0].type | company |
| authorships[4].institutions[0].lineage | https://openalex.org/I2250955327, https://openalex.org/I4210160618 |
| authorships[4].institutions[0].country_code | GB |
| authorships[4].institutions[0].display_name | Huawei Technologies (United Kingdom) |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Alex Chandra |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Futurewei Technologies Inc |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2102.13301 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | SLAP: a Split Latency Adaptive VLIW Pipeline Architecture Which Enables on-The-Fly Variable SIMD Vector-Length |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10054 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1708 |
| primary_topic.subfield.display_name | Hardware and Architecture |
| primary_topic.display_name | Parallel Computing and Optimization Techniques |
| related_works | https://openalex.org/W2152687294, https://openalex.org/W2137125244, https://openalex.org/W2111501183, https://openalex.org/W103727257, https://openalex.org/W2170675137, https://openalex.org/W2730237675, https://openalex.org/W2099786221, https://openalex.org/W2520178882, https://openalex.org/W216496217, https://openalex.org/W86735328, https://openalex.org/W2188643230, https://openalex.org/W2931791443, https://openalex.org/W1582855734, https://openalex.org/W177783857, https://openalex.org/W3134177848, https://openalex.org/W2593897803, https://openalex.org/W2465773298, https://openalex.org/W2490560965, https://openalex.org/W1634688820, https://openalex.org/W3168960906 |
| cited_by_count | 0 |
| locations_count | 5 |
| best_oa_location.id | pmh:oai:arXiv.org:2102.13301 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | public-domain |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2102.13301 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | https://openalex.org/licenses/public-domain |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2102.13301 |
| primary_location.id | doi:10.1109/icassp39728.2021.9413371 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) |
| primary_location.landing_page_url | https://doi.org/10.1109/icassp39728.2021.9413371 |
| publication_date | 2021-05-13 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W1727627327, https://openalex.org/W4237579036, https://openalex.org/W2131727955, https://openalex.org/W4213228224, https://openalex.org/W1594524188, https://openalex.org/W6716339255, https://openalex.org/W1969648707, https://openalex.org/W2118924037, https://openalex.org/W2273835612, https://openalex.org/W2932759747, https://openalex.org/W2154348160, https://openalex.org/W2414217512 |
| referenced_works_count | 12 |
| abstract_inverted_index.a | 74, 92, 112, 161, 180, 199 |
| abstract_inverted_index.1) | 141 |
| abstract_inverted_index.2) | 148 |
| abstract_inverted_index.3) | 159 |
| abstract_inverted_index.We | 102, 166 |
| abstract_inverted_index.an | 193 |
| abstract_inverted_index.as | 15, 44 |
| abstract_inverted_index.be | 67 |
| abstract_inverted_index.by | 12, 140 |
| abstract_inverted_index.de | 84 |
| abstract_inverted_index.in | 54, 60, 94 |
| abstract_inverted_index.is | 58 |
| abstract_inverted_index.of | 7, 97, 145, 201 |
| abstract_inverted_index.on | 133, 176 |
| abstract_inverted_index.to | 9, 37, 51, 69, 121, 198 |
| abstract_inverted_index.The | 80 |
| abstract_inverted_index.and | 20, 47, 99, 128, 137, 158, 171, 203 |
| abstract_inverted_index.but | 77 |
| abstract_inverted_index.can | 66 |
| abstract_inverted_index.due | 197 |
| abstract_inverted_index.for | 153 |
| abstract_inverted_index.law | 195 |
| abstract_inverted_index.low | 21 |
| abstract_inverted_index.the | 1, 4, 83, 104, 134, 168, 173, 186 |
| abstract_inverted_index.DMAs | 65, 127 |
| abstract_inverted_index.Over | 0 |
| abstract_inverted_index.SLAP | 131, 169 |
| abstract_inverted_index.VLIW | 81, 110 |
| abstract_inverted_index.away | 29 |
| abstract_inverted_index.copy | 71 |
| abstract_inverted_index.data | 72, 155 |
| abstract_inverted_index.even | 185 |
| abstract_inverted_index.from | 30, 91, 179, 192 |
| abstract_inverted_index.high | 52 |
| abstract_inverted_index.into | 73 |
| abstract_inverted_index.last | 2 |
| abstract_inverted_index.load | 164 |
| abstract_inverted_index.most | 187 |
| abstract_inverted_index.real | 61, 177 |
| abstract_inverted_index.such | 43 |
| abstract_inverted_index.that | 117 |
| abstract_inverted_index.time | 56, 62 |
| abstract_inverted_index.used | 68 |
| abstract_inverted_index.were | 35 |
| abstract_inverted_index.wire | 16, 22 |
| abstract_inverted_index.with | 78 |
| abstract_inverted_index.zero | 119 |
| abstract_inverted_index.SRAM, | 76 |
| abstract_inverted_index.Smart | 64 |
| abstract_inverted_index.Split | 105 |
| abstract_inverted_index.badly | 90 |
| abstract_inverted_index.cache | 113 |
| abstract_inverted_index.code, | 123 |
| abstract_inverted_index.facto | 85 |
| abstract_inverted_index.level | 156 |
| abstract_inverted_index.novel | 162 |
| abstract_inverted_index.often | 49 |
| abstract_inverted_index.smart | 126 |
| abstract_inverted_index.their | 31, 129 |
| abstract_inverted_index.which | 57 |
| abstract_inverted_index.while | 124 |
| abstract_inverted_index.(SLAP) | 109 |
| abstract_inverted_index.(where | 184 |
| abstract_inverted_index.Access | 136 |
| abstract_inverted_index.access | 8, 41 |
| abstract_inverted_index.adding | 160 |
| abstract_inverted_index.builds | 132 |
| abstract_inverted_index.change | 120 |
| abstract_inverted_index.decade | 3 |
| abstract_inverted_index.layer1 | 75 |
| abstract_inverted_index.layout | 24 |
| abstract_inverted_index.length | 152 |
| abstract_inverted_index.memory | 11, 40 |
| abstract_inverted_index.object | 122 |
| abstract_inverted_index.ports. | 32 |
| abstract_inverted_index.pushed | 25 |
| abstract_inverted_index.scalar | 98, 202 |
| abstract_inverted_index.shared | 10 |
| abstract_inverted_index.signal | 86 |
| abstract_inverted_index.suffer | 191 |
| abstract_inverted_index.system | 183 |
| abstract_inverted_index.traces | 178 |
| abstract_inverted_index.units, | 147 |
| abstract_inverted_index.vector | 100, 151, 204 |
| abstract_inverted_index.Amdahls | 194 |
| abstract_inverted_index.Execute | 138 |
| abstract_inverted_index.Latency | 106 |
| abstract_inverted_index.Various | 33 |
| abstract_inverted_index.average | 39 |
| abstract_inverted_index.compute | 188 |
| abstract_inverted_index.concept | 139 |
| abstract_inverted_index.density | 23 |
| abstract_inverted_index.discuss | 167 |
| abstract_inverted_index.engine, | 88 |
| abstract_inverted_index.farther | 28 |
| abstract_inverted_index.improve | 38 |
| abstract_inverted_index.latency | 6, 19 |
| abstract_inverted_index.leading | 50 |
| abstract_inverted_index.mixture | 200 |
| abstract_inverted_index.suffers | 89 |
| abstract_inverted_index.Adaptive | 107 |
| abstract_inverted_index.Pipeline | 108 |
| abstract_inverted_index.baseband | 182 |
| abstract_inverted_index.benefits | 175 |
| abstract_inverted_index.breaking | 142 |
| abstract_inverted_index.deployed | 36 |
| abstract_inverted_index.describe | 103 |
| abstract_inverted_index.directly | 70 |
| abstract_inverted_index.enabling | 149 |
| abstract_inverted_index.lockstep | 95, 143 |
| abstract_inverted_index.memories | 27 |
| abstract_inverted_index.relative | 5 |
| abstract_inverted_index.removing | 125 |
| abstract_inverted_index.requires | 118 |
| abstract_inverted_index.systems. | 63 |
| abstract_inverted_index.variable | 150, 154 |
| abstract_inverted_index.variance | 53 |
| abstract_inverted_index.wireless | 181 |
| abstract_inverted_index.Decoupled | 135 |
| abstract_inverted_index.breakdown | 93 |
| abstract_inverted_index.dominated | 18 |
| abstract_inverted_index.execution | 55, 96, 144 |
| abstract_inverted_index.functions | 190 |
| abstract_inverted_index.increased | 14 |
| abstract_inverted_index.intensive | 189 |
| abstract_inverted_index.multicore | 13 |
| abstract_inverted_index.multiport | 26 |
| abstract_inverted_index.overhead. | 79, 130 |
| abstract_inverted_index.functional | 146 |
| abstract_inverted_index.latencies, | 42 |
| abstract_inverted_index.limitation | 196 |
| abstract_inverted_index.mechanism. | 165 |
| abstract_inverted_index.processing | 87 |
| abstract_inverted_index.resistance | 17 |
| abstract_inverted_index.techniques | 34 |
| abstract_inverted_index.technology | 116 |
| abstract_inverted_index.triangular | 163 |
| abstract_inverted_index.demonstrate | 172 |
| abstract_inverted_index.improvement | 115 |
| abstract_inverted_index.performance | 114, 174 |
| abstract_inverted_index.speculative | 45 |
| abstract_inverted_index.architecture | 170 |
| abstract_inverted_index.parallelism, | 157 |
| abstract_inverted_index.pre-fetching | 46 |
| abstract_inverted_index.processing). | 205 |
| abstract_inverted_index.unacceptable | 59 |
| abstract_inverted_index.architecture, | 82, 111 |
| abstract_inverted_index.instructions. | 101 |
| abstract_inverted_index.branch-prediction, | 48 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.02688089 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |