Small and large scale behavior of moments of Poisson cluster processes Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.17615/xm8c-nw83
Poisson cluster processes are special point processes that find use in modeling Internet traffic, neural spike trains, computer failure times and other real-life phenomena. The focus of this work is on the various moments and cumulants of Poisson cluster processes, and specifically on their behavior at small and large scales. Under suitable assumptions motivated by the multiscale behavior of Internet traffic, it is shown that all these various quantities satisfy scale free (scaling) relations at both small and large scales. Only some of these relations turn out to carry information about salient model parameters of interest, and consequently can be used in the inference of the scaling behavior of Poisson cluster processes. At large scales, the derived results complement those available in the literature on the distributional convergence of normalized Poisson cluster processes, and also bring forward a more practical interpretation of the so-called slow and fast growth regimes. Finally, the results are applied to a real data trace from Internet traffic.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.17615/xm8c-nw83
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4300109034
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4300109034Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.17615/xm8c-nw83Digital Object Identifier
- Title
-
Small and large scale behavior of moments of Poisson cluster processesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-04-16Full publication date if available
- Authors
-
Nelson Antunes, Vladas Pipiras, Patrice Abry, Darryl VeitchList of authors in order
- Landing page
-
https://doi.org/10.17615/xm8c-nw83Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.17615/xm8c-nw83Direct OA link when available
- Concepts
-
Cluster (spacecraft), Scale (ratio), Poisson distribution, Statistical physics, Mathematics, Physics, Computer science, Statistics, Quantum mechanics, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4300109034 |
|---|---|
| doi | https://doi.org/10.17615/xm8c-nw83 |
| ids.doi | https://doi.org/10.17615/xm8c-nw83 |
| ids.openalex | https://openalex.org/W4300109034 |
| fwci | 0.0 |
| type | article |
| title | Small and large scale behavior of moments of Poisson cluster processes |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11152 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.8532999753952026 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2610 |
| topics[0].subfield.display_name | Mathematical Physics |
| topics[0].display_name | Stochastic processes and statistical mechanics |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C164866538 |
| concepts[0].level | 2 |
| concepts[0].score | 0.650362491607666 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q367351 |
| concepts[0].display_name | Cluster (spacecraft) |
| concepts[1].id | https://openalex.org/C2778755073 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6080541610717773 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[1].display_name | Scale (ratio) |
| concepts[2].id | https://openalex.org/C100906024 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5599796175956726 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q205692 |
| concepts[2].display_name | Poisson distribution |
| concepts[3].id | https://openalex.org/C121864883 |
| concepts[3].level | 1 |
| concepts[3].score | 0.44559386372566223 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q677916 |
| concepts[3].display_name | Statistical physics |
| concepts[4].id | https://openalex.org/C33923547 |
| concepts[4].level | 0 |
| concepts[4].score | 0.3212318420410156 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[4].display_name | Mathematics |
| concepts[5].id | https://openalex.org/C121332964 |
| concepts[5].level | 0 |
| concepts[5].score | 0.29537656903266907 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[5].display_name | Physics |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.2606939375400543 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C105795698 |
| concepts[7].level | 1 |
| concepts[7].score | 0.2480567991733551 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[7].display_name | Statistics |
| concepts[8].id | https://openalex.org/C62520636 |
| concepts[8].level | 1 |
| concepts[8].score | 0.045018941164016724 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[8].display_name | Quantum mechanics |
| concepts[9].id | https://openalex.org/C199360897 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[9].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/cluster |
| keywords[0].score | 0.650362491607666 |
| keywords[0].display_name | Cluster (spacecraft) |
| keywords[1].id | https://openalex.org/keywords/scale |
| keywords[1].score | 0.6080541610717773 |
| keywords[1].display_name | Scale (ratio) |
| keywords[2].id | https://openalex.org/keywords/poisson-distribution |
| keywords[2].score | 0.5599796175956726 |
| keywords[2].display_name | Poisson distribution |
| keywords[3].id | https://openalex.org/keywords/statistical-physics |
| keywords[3].score | 0.44559386372566223 |
| keywords[3].display_name | Statistical physics |
| keywords[4].id | https://openalex.org/keywords/mathematics |
| keywords[4].score | 0.3212318420410156 |
| keywords[4].display_name | Mathematics |
| keywords[5].id | https://openalex.org/keywords/physics |
| keywords[5].score | 0.29537656903266907 |
| keywords[5].display_name | Physics |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.2606939375400543 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/statistics |
| keywords[7].score | 0.2480567991733551 |
| keywords[7].display_name | Statistics |
| keywords[8].id | https://openalex.org/keywords/quantum-mechanics |
| keywords[8].score | 0.045018941164016724 |
| keywords[8].display_name | Quantum mechanics |
| language | en |
| locations[0].id | doi:10.17615/xm8c-nw83 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S7407051488 |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | UNC Libraries |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | article-journal |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.17615/xm8c-nw83 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5090589133 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6071-1099 |
| authorships[0].author.display_name | Nelson Antunes |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Antunes, Nelson |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5004623767 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6838-6294 |
| authorships[1].author.display_name | Vladas Pipiras |
| authorships[1].affiliations[0].raw_affiliation_string | College of Arts and Sciences, Department of Statistics and Operations Research |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Pipiras, Vladas |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Arts and Sciences, Department of Statistics and Operations Research |
| authorships[2].author.id | https://openalex.org/A5050643672 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7096-8290 |
| authorships[2].author.display_name | Patrice Abry |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Abry, Patrice |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5010299607 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8163-3464 |
| authorships[3].author.display_name | Darryl Veitch |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Veitch, Darryl |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.17615/xm8c-nw83 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Small and large scale behavior of moments of Poisson cluster processes |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11152 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.8532999753952026 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2610 |
| primary_topic.subfield.display_name | Mathematical Physics |
| primary_topic.display_name | Stochastic processes and statistical mechanics |
| related_works | https://openalex.org/W1979597421, https://openalex.org/W2007980826, https://openalex.org/W4245490552, https://openalex.org/W4225152035, https://openalex.org/W2061531152, https://openalex.org/W3002753104, https://openalex.org/W2077600819, https://openalex.org/W1587224694, https://openalex.org/W2911598644, https://openalex.org/W2050732911 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.17615/xm8c-nw83 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S7407051488 |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | UNC Libraries |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | article-journal |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.17615/xm8c-nw83 |
| primary_location.id | doi:10.17615/xm8c-nw83 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S7407051488 |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | UNC Libraries |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | article-journal |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.17615/xm8c-nw83 |
| publication_date | 2020-04-16 |
| publication_year | 2020 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 137, 155 |
| abstract_inverted_index.At | 112 |
| abstract_inverted_index.at | 45, 74 |
| abstract_inverted_index.be | 99 |
| abstract_inverted_index.by | 54 |
| abstract_inverted_index.in | 10, 101, 121 |
| abstract_inverted_index.is | 29, 62 |
| abstract_inverted_index.it | 61 |
| abstract_inverted_index.of | 26, 36, 58, 82, 94, 104, 108, 128, 141 |
| abstract_inverted_index.on | 30, 42, 124 |
| abstract_inverted_index.to | 87, 154 |
| abstract_inverted_index.The | 24 |
| abstract_inverted_index.all | 65 |
| abstract_inverted_index.and | 20, 34, 40, 47, 77, 96, 133, 145 |
| abstract_inverted_index.are | 3, 152 |
| abstract_inverted_index.can | 98 |
| abstract_inverted_index.out | 86 |
| abstract_inverted_index.the | 31, 55, 102, 105, 115, 122, 125, 142, 150 |
| abstract_inverted_index.use | 9 |
| abstract_inverted_index.Only | 80 |
| abstract_inverted_index.also | 134 |
| abstract_inverted_index.both | 75 |
| abstract_inverted_index.data | 157 |
| abstract_inverted_index.fast | 146 |
| abstract_inverted_index.find | 8 |
| abstract_inverted_index.free | 71 |
| abstract_inverted_index.from | 159 |
| abstract_inverted_index.more | 138 |
| abstract_inverted_index.real | 156 |
| abstract_inverted_index.slow | 144 |
| abstract_inverted_index.some | 81 |
| abstract_inverted_index.that | 7, 64 |
| abstract_inverted_index.this | 27 |
| abstract_inverted_index.turn | 85 |
| abstract_inverted_index.used | 100 |
| abstract_inverted_index.work | 28 |
| abstract_inverted_index.Under | 50 |
| abstract_inverted_index.about | 90 |
| abstract_inverted_index.bring | 135 |
| abstract_inverted_index.carry | 88 |
| abstract_inverted_index.focus | 25 |
| abstract_inverted_index.large | 48, 78, 113 |
| abstract_inverted_index.model | 92 |
| abstract_inverted_index.other | 21 |
| abstract_inverted_index.point | 5 |
| abstract_inverted_index.scale | 70 |
| abstract_inverted_index.shown | 63 |
| abstract_inverted_index.small | 46, 76 |
| abstract_inverted_index.spike | 15 |
| abstract_inverted_index.their | 43 |
| abstract_inverted_index.these | 66, 83 |
| abstract_inverted_index.those | 119 |
| abstract_inverted_index.times | 19 |
| abstract_inverted_index.trace | 158 |
| abstract_inverted_index.growth | 147 |
| abstract_inverted_index.neural | 14 |
| abstract_inverted_index.Poisson | 0, 37, 109, 130 |
| abstract_inverted_index.applied | 153 |
| abstract_inverted_index.cluster | 1, 38, 110, 131 |
| abstract_inverted_index.derived | 116 |
| abstract_inverted_index.failure | 18 |
| abstract_inverted_index.forward | 136 |
| abstract_inverted_index.moments | 33 |
| abstract_inverted_index.results | 117, 151 |
| abstract_inverted_index.salient | 91 |
| abstract_inverted_index.satisfy | 69 |
| abstract_inverted_index.scales, | 114 |
| abstract_inverted_index.scales. | 49, 79 |
| abstract_inverted_index.scaling | 106 |
| abstract_inverted_index.special | 4 |
| abstract_inverted_index.trains, | 16 |
| abstract_inverted_index.various | 32, 67 |
| abstract_inverted_index.Finally, | 149 |
| abstract_inverted_index.Internet | 12, 59, 160 |
| abstract_inverted_index.behavior | 44, 57, 107 |
| abstract_inverted_index.computer | 17 |
| abstract_inverted_index.modeling | 11 |
| abstract_inverted_index.regimes. | 148 |
| abstract_inverted_index.suitable | 51 |
| abstract_inverted_index.traffic, | 13, 60 |
| abstract_inverted_index.traffic. | 161 |
| abstract_inverted_index.(scaling) | 72 |
| abstract_inverted_index.available | 120 |
| abstract_inverted_index.cumulants | 35 |
| abstract_inverted_index.inference | 103 |
| abstract_inverted_index.interest, | 95 |
| abstract_inverted_index.motivated | 53 |
| abstract_inverted_index.practical | 139 |
| abstract_inverted_index.processes | 2, 6 |
| abstract_inverted_index.real-life | 22 |
| abstract_inverted_index.relations | 73, 84 |
| abstract_inverted_index.so-called | 143 |
| abstract_inverted_index.complement | 118 |
| abstract_inverted_index.literature | 123 |
| abstract_inverted_index.multiscale | 56 |
| abstract_inverted_index.normalized | 129 |
| abstract_inverted_index.parameters | 93 |
| abstract_inverted_index.phenomena. | 23 |
| abstract_inverted_index.processes, | 39, 132 |
| abstract_inverted_index.processes. | 111 |
| abstract_inverted_index.quantities | 68 |
| abstract_inverted_index.assumptions | 52 |
| abstract_inverted_index.convergence | 127 |
| abstract_inverted_index.information | 89 |
| abstract_inverted_index.consequently | 97 |
| abstract_inverted_index.specifically | 41 |
| abstract_inverted_index.distributional | 126 |
| abstract_inverted_index.interpretation | 140 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.36535686 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |