Small Area Estimation with Random Forests and the LASSO Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2308.15180
We consider random forests and LASSO methods for model-based small area estimation when the number of areas with sampled data is a small fraction of the total areas for which estimates are required. Abundant auxiliary information is available for the sampled areas, from the survey, and for all areas, from an exterior source, and the goal is to use auxiliary variables to predict the outcome of interest. We compare areal-level random forests and LASSO approaches to a frequentist forward variable selection approach and a Bayesian shrinkage method. Further, to measure the uncertainty of estimates obtained from random forests and the LASSO, we propose a modification of the split conformal procedure that relaxes the assumption of identically distributed data. This work is motivated by Ghanaian data available from the sixth Living Standard Survey (GLSS) and the 2010 Population and Housing Census. We estimate the areal mean household log consumption using both datasets. The outcome variable is measured only in the GLSS for 3\% of all the areas (136 out of 5019) and more than 170 potential covariates are available from both datasets. Among the four modelling methods considered, the Bayesian shrinkage performed the best in terms of bias, MSE and prediction interval coverages and scores, as assessed through a cross-validation study. We find substantial between-area variation, the log consumption areal point estimates showing a 1.3-fold variation across the GAMA region. The western areas are the poorest while the Accra Metropolitan Area district gathers the richest areas.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2308.15180
- https://arxiv.org/pdf/2308.15180
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4386302626
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4386302626Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2308.15180Digital Object Identifier
- Title
-
Small Area Estimation with Random Forests and the LASSOWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-08-29Full publication date if available
- Authors
-
Victoire Michal, Jon Wakefield, Alexandra M. Schmidt, Alicia Cavanaugh, Brian E. Robinson, Jill BaumgartnerList of authors in order
- Landing page
-
https://arxiv.org/abs/2308.15180Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2308.15180Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2308.15180Direct OA link when available
- Concepts
-
Small area estimation, Covariate, Lasso (programming language), Statistics, Random forest, Frequentist inference, Random effects model, Point estimation, Independent and identically distributed random variables, Bayesian probability, Geography, Population, Econometrics, Estimator, Mathematics, Bayesian inference, Random variable, Computer science, Machine learning, Meta-analysis, Internal medicine, World Wide Web, Sociology, Demography, MedicineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4386302626 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2308.15180 |
| ids.doi | https://doi.org/10.48550/arxiv.2308.15180 |
| ids.openalex | https://openalex.org/W4386302626 |
| fwci | 0.0 |
| type | preprint |
| title | Small Area Estimation with Random Forests and the LASSO |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T14509 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.9865999817848206 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1803 |
| topics[0].subfield.display_name | Management Science and Operations Research |
| topics[0].display_name | demographic modeling and climate adaptation |
| topics[1].id | https://openalex.org/T10226 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9704999923706055 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2306 |
| topics[1].subfield.display_name | Global and Planetary Change |
| topics[1].display_name | Land Use and Ecosystem Services |
| topics[2].id | https://openalex.org/T11911 |
| topics[2].field.id | https://openalex.org/fields/20 |
| topics[2].field.display_name | Economics, Econometrics and Finance |
| topics[2].score | 0.9383000135421753 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2002 |
| topics[2].subfield.display_name | Economics and Econometrics |
| topics[2].display_name | Spatial and Panel Data Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C129963666 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8163554668426514 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17105857 |
| concepts[0].display_name | Small area estimation |
| concepts[1].id | https://openalex.org/C119043178 |
| concepts[1].level | 2 |
| concepts[1].score | 0.645382285118103 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q320723 |
| concepts[1].display_name | Covariate |
| concepts[2].id | https://openalex.org/C37616216 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6296287178993225 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3218363 |
| concepts[2].display_name | Lasso (programming language) |
| concepts[3].id | https://openalex.org/C105795698 |
| concepts[3].level | 1 |
| concepts[3].score | 0.587293267250061 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[3].display_name | Statistics |
| concepts[4].id | https://openalex.org/C169258074 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5659564733505249 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[4].display_name | Random forest |
| concepts[5].id | https://openalex.org/C162376815 |
| concepts[5].level | 4 |
| concepts[5].score | 0.4979221820831299 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2158281 |
| concepts[5].display_name | Frequentist inference |
| concepts[6].id | https://openalex.org/C168743327 |
| concepts[6].level | 3 |
| concepts[6].score | 0.47616904973983765 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1826427 |
| concepts[6].display_name | Random effects model |
| concepts[7].id | https://openalex.org/C41426520 |
| concepts[7].level | 2 |
| concepts[7].score | 0.47101151943206787 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1192065 |
| concepts[7].display_name | Point estimation |
| concepts[8].id | https://openalex.org/C141513077 |
| concepts[8].level | 3 |
| concepts[8].score | 0.46174556016921997 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q378542 |
| concepts[8].display_name | Independent and identically distributed random variables |
| concepts[9].id | https://openalex.org/C107673813 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4451879560947418 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[9].display_name | Bayesian probability |
| concepts[10].id | https://openalex.org/C205649164 |
| concepts[10].level | 0 |
| concepts[10].score | 0.42758065462112427 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[10].display_name | Geography |
| concepts[11].id | https://openalex.org/C2908647359 |
| concepts[11].level | 2 |
| concepts[11].score | 0.42367061972618103 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2625603 |
| concepts[11].display_name | Population |
| concepts[12].id | https://openalex.org/C149782125 |
| concepts[12].level | 1 |
| concepts[12].score | 0.4053623080253601 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[12].display_name | Econometrics |
| concepts[13].id | https://openalex.org/C185429906 |
| concepts[13].level | 2 |
| concepts[13].score | 0.4006316661834717 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1130160 |
| concepts[13].display_name | Estimator |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.3849256932735443 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C160234255 |
| concepts[15].level | 3 |
| concepts[15].score | 0.3458935022354126 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q812535 |
| concepts[15].display_name | Bayesian inference |
| concepts[16].id | https://openalex.org/C122123141 |
| concepts[16].level | 2 |
| concepts[16].score | 0.33603522181510925 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q176623 |
| concepts[16].display_name | Random variable |
| concepts[17].id | https://openalex.org/C41008148 |
| concepts[17].level | 0 |
| concepts[17].score | 0.2761431336402893 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[17].display_name | Computer science |
| concepts[18].id | https://openalex.org/C119857082 |
| concepts[18].level | 1 |
| concepts[18].score | 0.10014081001281738 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[18].display_name | Machine learning |
| concepts[19].id | https://openalex.org/C95190672 |
| concepts[19].level | 2 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q815382 |
| concepts[19].display_name | Meta-analysis |
| concepts[20].id | https://openalex.org/C126322002 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[20].display_name | Internal medicine |
| concepts[21].id | https://openalex.org/C136764020 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[21].display_name | World Wide Web |
| concepts[22].id | https://openalex.org/C144024400 |
| concepts[22].level | 0 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[22].display_name | Sociology |
| concepts[23].id | https://openalex.org/C149923435 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q37732 |
| concepts[23].display_name | Demography |
| concepts[24].id | https://openalex.org/C71924100 |
| concepts[24].level | 0 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[24].display_name | Medicine |
| keywords[0].id | https://openalex.org/keywords/small-area-estimation |
| keywords[0].score | 0.8163554668426514 |
| keywords[0].display_name | Small area estimation |
| keywords[1].id | https://openalex.org/keywords/covariate |
| keywords[1].score | 0.645382285118103 |
| keywords[1].display_name | Covariate |
| keywords[2].id | https://openalex.org/keywords/lasso |
| keywords[2].score | 0.6296287178993225 |
| keywords[2].display_name | Lasso (programming language) |
| keywords[3].id | https://openalex.org/keywords/statistics |
| keywords[3].score | 0.587293267250061 |
| keywords[3].display_name | Statistics |
| keywords[4].id | https://openalex.org/keywords/random-forest |
| keywords[4].score | 0.5659564733505249 |
| keywords[4].display_name | Random forest |
| keywords[5].id | https://openalex.org/keywords/frequentist-inference |
| keywords[5].score | 0.4979221820831299 |
| keywords[5].display_name | Frequentist inference |
| keywords[6].id | https://openalex.org/keywords/random-effects-model |
| keywords[6].score | 0.47616904973983765 |
| keywords[6].display_name | Random effects model |
| keywords[7].id | https://openalex.org/keywords/point-estimation |
| keywords[7].score | 0.47101151943206787 |
| keywords[7].display_name | Point estimation |
| keywords[8].id | https://openalex.org/keywords/independent-and-identically-distributed-random-variables |
| keywords[8].score | 0.46174556016921997 |
| keywords[8].display_name | Independent and identically distributed random variables |
| keywords[9].id | https://openalex.org/keywords/bayesian-probability |
| keywords[9].score | 0.4451879560947418 |
| keywords[9].display_name | Bayesian probability |
| keywords[10].id | https://openalex.org/keywords/geography |
| keywords[10].score | 0.42758065462112427 |
| keywords[10].display_name | Geography |
| keywords[11].id | https://openalex.org/keywords/population |
| keywords[11].score | 0.42367061972618103 |
| keywords[11].display_name | Population |
| keywords[12].id | https://openalex.org/keywords/econometrics |
| keywords[12].score | 0.4053623080253601 |
| keywords[12].display_name | Econometrics |
| keywords[13].id | https://openalex.org/keywords/estimator |
| keywords[13].score | 0.4006316661834717 |
| keywords[13].display_name | Estimator |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.3849256932735443 |
| keywords[14].display_name | Mathematics |
| keywords[15].id | https://openalex.org/keywords/bayesian-inference |
| keywords[15].score | 0.3458935022354126 |
| keywords[15].display_name | Bayesian inference |
| keywords[16].id | https://openalex.org/keywords/random-variable |
| keywords[16].score | 0.33603522181510925 |
| keywords[16].display_name | Random variable |
| keywords[17].id | https://openalex.org/keywords/computer-science |
| keywords[17].score | 0.2761431336402893 |
| keywords[17].display_name | Computer science |
| keywords[18].id | https://openalex.org/keywords/machine-learning |
| keywords[18].score | 0.10014081001281738 |
| keywords[18].display_name | Machine learning |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2308.15180 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2308.15180 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2308.15180 |
| locations[1].id | doi:10.48550/arxiv.2308.15180 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2308.15180 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5068866698 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7863-8296 |
| authorships[0].author.display_name | Victoire Michal |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Michal, Victoire |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5113678310 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Jon Wakefield |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wakefield, Jon |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5006297332 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6448-6367 |
| authorships[2].author.display_name | Alexandra M. Schmidt |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Schmidt, Alexandra M. |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5056929646 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4966-8397 |
| authorships[3].author.display_name | Alicia Cavanaugh |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Cavanaugh, Alicia |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5031566650 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8972-8318 |
| authorships[4].author.display_name | Brian E. Robinson |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Robinson, Brian |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5042248442 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-8397-6380 |
| authorships[5].author.display_name | Jill Baumgartner |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Baumgartner, Jill |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2308.15180 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Small Area Estimation with Random Forests and the LASSO |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T14509 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.9865999817848206 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1803 |
| primary_topic.subfield.display_name | Management Science and Operations Research |
| primary_topic.display_name | demographic modeling and climate adaptation |
| related_works | https://openalex.org/W3180984448, https://openalex.org/W3042703790, https://openalex.org/W4236081058, https://openalex.org/W4253877353, https://openalex.org/W2055443358, https://openalex.org/W2026471984, https://openalex.org/W4211085691, https://openalex.org/W3123238230, https://openalex.org/W2287951110, https://openalex.org/W2136413607 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2308.15180 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2308.15180 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2308.15180 |
| primary_location.id | pmh:oai:arXiv.org:2308.15180 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2308.15180 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2308.15180 |
| publication_date | 2023-08-29 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 21, 76, 83, 103, 207, 222 |
| abstract_inverted_index.We | 0, 67, 140, 210 |
| abstract_inverted_index.an | 50 |
| abstract_inverted_index.as | 204 |
| abstract_inverted_index.by | 122 |
| abstract_inverted_index.in | 157, 193 |
| abstract_inverted_index.is | 20, 36, 56, 120, 154 |
| abstract_inverted_index.of | 15, 24, 65, 92, 105, 114, 162, 168, 195 |
| abstract_inverted_index.to | 57, 61, 75, 88 |
| abstract_inverted_index.we | 101 |
| abstract_inverted_index.170 | 173 |
| abstract_inverted_index.3\% | 161 |
| abstract_inverted_index.MSE | 197 |
| abstract_inverted_index.The | 151, 229 |
| abstract_inverted_index.all | 47, 163 |
| abstract_inverted_index.and | 4, 45, 53, 72, 82, 98, 133, 137, 170, 198, 202 |
| abstract_inverted_index.are | 31, 176, 232 |
| abstract_inverted_index.for | 7, 28, 38, 46, 160 |
| abstract_inverted_index.log | 146, 216 |
| abstract_inverted_index.out | 167 |
| abstract_inverted_index.the | 13, 25, 39, 43, 54, 63, 90, 99, 106, 112, 127, 134, 142, 158, 164, 182, 187, 191, 215, 226, 233, 236, 242 |
| abstract_inverted_index.use | 58 |
| abstract_inverted_index.(136 | 166 |
| abstract_inverted_index.2010 | 135 |
| abstract_inverted_index.Area | 239 |
| abstract_inverted_index.GAMA | 227 |
| abstract_inverted_index.GLSS | 159 |
| abstract_inverted_index.This | 118 |
| abstract_inverted_index.area | 10 |
| abstract_inverted_index.best | 192 |
| abstract_inverted_index.both | 149, 179 |
| abstract_inverted_index.data | 19, 124 |
| abstract_inverted_index.find | 211 |
| abstract_inverted_index.four | 183 |
| abstract_inverted_index.from | 42, 49, 95, 126, 178 |
| abstract_inverted_index.goal | 55 |
| abstract_inverted_index.mean | 144 |
| abstract_inverted_index.more | 171 |
| abstract_inverted_index.only | 156 |
| abstract_inverted_index.than | 172 |
| abstract_inverted_index.that | 110 |
| abstract_inverted_index.when | 12 |
| abstract_inverted_index.with | 17 |
| abstract_inverted_index.work | 119 |
| abstract_inverted_index.5019) | 169 |
| abstract_inverted_index.Accra | 237 |
| abstract_inverted_index.Among | 181 |
| abstract_inverted_index.LASSO | 5, 73 |
| abstract_inverted_index.areal | 143, 218 |
| abstract_inverted_index.areas | 16, 27, 165, 231 |
| abstract_inverted_index.bias, | 196 |
| abstract_inverted_index.data. | 117 |
| abstract_inverted_index.point | 219 |
| abstract_inverted_index.sixth | 128 |
| abstract_inverted_index.small | 9, 22 |
| abstract_inverted_index.split | 107 |
| abstract_inverted_index.terms | 194 |
| abstract_inverted_index.total | 26 |
| abstract_inverted_index.using | 148 |
| abstract_inverted_index.which | 29 |
| abstract_inverted_index.while | 235 |
| abstract_inverted_index.(GLSS) | 132 |
| abstract_inverted_index.LASSO, | 100 |
| abstract_inverted_index.Living | 129 |
| abstract_inverted_index.Survey | 131 |
| abstract_inverted_index.across | 225 |
| abstract_inverted_index.areas, | 41, 48 |
| abstract_inverted_index.areas. | 244 |
| abstract_inverted_index.number | 14 |
| abstract_inverted_index.random | 2, 70, 96 |
| abstract_inverted_index.study. | 209 |
| abstract_inverted_index.Census. | 139 |
| abstract_inverted_index.Housing | 138 |
| abstract_inverted_index.compare | 68 |
| abstract_inverted_index.forests | 3, 71, 97 |
| abstract_inverted_index.forward | 78 |
| abstract_inverted_index.gathers | 241 |
| abstract_inverted_index.measure | 89 |
| abstract_inverted_index.method. | 86 |
| abstract_inverted_index.methods | 6, 185 |
| abstract_inverted_index.outcome | 64, 152 |
| abstract_inverted_index.poorest | 234 |
| abstract_inverted_index.predict | 62 |
| abstract_inverted_index.propose | 102 |
| abstract_inverted_index.region. | 228 |
| abstract_inverted_index.relaxes | 111 |
| abstract_inverted_index.richest | 243 |
| abstract_inverted_index.sampled | 18, 40 |
| abstract_inverted_index.scores, | 203 |
| abstract_inverted_index.showing | 221 |
| abstract_inverted_index.source, | 52 |
| abstract_inverted_index.survey, | 44 |
| abstract_inverted_index.through | 206 |
| abstract_inverted_index.western | 230 |
| abstract_inverted_index.1.3-fold | 223 |
| abstract_inverted_index.Abundant | 33 |
| abstract_inverted_index.Bayesian | 84, 188 |
| abstract_inverted_index.Further, | 87 |
| abstract_inverted_index.Ghanaian | 123 |
| abstract_inverted_index.Standard | 130 |
| abstract_inverted_index.approach | 81 |
| abstract_inverted_index.assessed | 205 |
| abstract_inverted_index.consider | 1 |
| abstract_inverted_index.district | 240 |
| abstract_inverted_index.estimate | 141 |
| abstract_inverted_index.exterior | 51 |
| abstract_inverted_index.fraction | 23 |
| abstract_inverted_index.interval | 200 |
| abstract_inverted_index.measured | 155 |
| abstract_inverted_index.obtained | 94 |
| abstract_inverted_index.variable | 79, 153 |
| abstract_inverted_index.auxiliary | 34, 59 |
| abstract_inverted_index.available | 37, 125, 177 |
| abstract_inverted_index.conformal | 108 |
| abstract_inverted_index.coverages | 201 |
| abstract_inverted_index.datasets. | 150, 180 |
| abstract_inverted_index.estimates | 30, 93, 220 |
| abstract_inverted_index.household | 145 |
| abstract_inverted_index.interest. | 66 |
| abstract_inverted_index.modelling | 184 |
| abstract_inverted_index.motivated | 121 |
| abstract_inverted_index.performed | 190 |
| abstract_inverted_index.potential | 174 |
| abstract_inverted_index.procedure | 109 |
| abstract_inverted_index.required. | 32 |
| abstract_inverted_index.selection | 80 |
| abstract_inverted_index.shrinkage | 85, 189 |
| abstract_inverted_index.variables | 60 |
| abstract_inverted_index.variation | 224 |
| abstract_inverted_index.Population | 136 |
| abstract_inverted_index.approaches | 74 |
| abstract_inverted_index.assumption | 113 |
| abstract_inverted_index.covariates | 175 |
| abstract_inverted_index.estimation | 11 |
| abstract_inverted_index.prediction | 199 |
| abstract_inverted_index.variation, | 214 |
| abstract_inverted_index.areal-level | 69 |
| abstract_inverted_index.considered, | 186 |
| abstract_inverted_index.consumption | 147, 217 |
| abstract_inverted_index.distributed | 116 |
| abstract_inverted_index.frequentist | 77 |
| abstract_inverted_index.identically | 115 |
| abstract_inverted_index.information | 35 |
| abstract_inverted_index.model-based | 8 |
| abstract_inverted_index.substantial | 212 |
| abstract_inverted_index.uncertainty | 91 |
| abstract_inverted_index.Metropolitan | 238 |
| abstract_inverted_index.between-area | 213 |
| abstract_inverted_index.modification | 104 |
| abstract_inverted_index.cross-validation | 208 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/1 |
| sustainable_development_goals[0].score | 0.7099999785423279 |
| sustainable_development_goals[0].display_name | No poverty |
| citation_normalized_percentile |