Small Target Detection in Human-Robot Interaction: A Research and Application Analysis Article Swipe
The advancement of computer vision and robot vision techniques has revolutionized human-robot interaction by enabling more precise detection of small targets, particularly in challenging environments. This paper presents a comprehensive analysis of remote gesture recognition systems that address the limitations of traditional visual inspection methods, such as interference from cluttered backgrounds, low-resolution inputs, and partial occlusions. A detailed investigation of state-of-the-art algorithms—including Faster R-CNN, Mask R-CNN, SSD, RetinaNet, and YOLO variants—reveals persistent challenges in feature loss, scale sensitivity, and computational inefficiency during gesture detection in complex scenarios. The research explores innovative strategies that integrate multi-scale progressive fusion methods, such as the Adaptive Feature Pyramid Network (AFPN) and adaptive spatial fusion techniques, to enhance detection performance. Enhancements to YOLO-v8 combined with a shape-IoU loss function further improve the accuracy and robustness of small gesture recognition. The approach employs advanced deep learning, sensor fusion, and edge computing techniques to refine the gesture recognition process, from data acquisition by various sensors—including monocular cameras, multi-ocular cameras, and depth sensors—to sophisticated preprocessing, segmentation, and feature extraction. Comparative experimental results indicate that high-precision models like Mask R-CNN deliver superior accuracy, while optimized lightweight frameworks such as YOLO-v8 achieve real-time performance at 30+ frames per second, making them highly suitable for dynamic applications.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1051/itmconf/20257803006
- https://www.itm-conferences.org/articles/itmconf/pdf/2025/09/itmconf_cseit2025_03006.pdf
- OA Status
- diamond
- References
- 6
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4414070865
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414070865Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1051/itmconf/20257803006Digital Object Identifier
- Title
-
Small Target Detection in Human-Robot Interaction: A Research and Application AnalysisWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Linqiang PanList of authors in order
- Landing page
-
https://doi.org/10.1051/itmconf/20257803006Publisher landing page
- PDF URL
-
https://www.itm-conferences.org/articles/itmconf/pdf/2025/09/itmconf_cseit2025_03006.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://www.itm-conferences.org/articles/itmconf/pdf/2025/09/itmconf_cseit2025_03006.pdfDirect OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
6Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4414070865 |
|---|---|
| doi | https://doi.org/10.1051/itmconf/20257803006 |
| ids.doi | https://doi.org/10.1051/itmconf/20257803006 |
| ids.openalex | https://openalex.org/W4414070865 |
| fwci | 0.0 |
| type | article |
| title | Small Target Detection in Human-Robot Interaction: A Research and Application Analysis |
| biblio.issue | |
| biblio.volume | 78 |
| biblio.last_page | 03006 |
| biblio.first_page | 03006 |
| topics[0].id | https://openalex.org/T12389 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.49480000138282776 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2202 |
| topics[0].subfield.display_name | Aerospace Engineering |
| topics[0].display_name | Infrared Target Detection Methodologies |
| topics[1].id | https://openalex.org/T12111 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.489300012588501 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2209 |
| topics[1].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[1].display_name | Industrial Vision Systems and Defect Detection |
| topics[2].id | https://openalex.org/T14257 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.47600001096725464 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Advanced Measurement and Detection Methods |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | doi:10.1051/itmconf/20257803006 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210171711 |
| locations[0].source.issn | 2271-2097, 2431-7578 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2271-2097 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | ITM Web of Conferences |
| locations[0].source.host_organization | https://openalex.org/P4310319748 |
| locations[0].source.host_organization_name | EDP Sciences |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319748 |
| locations[0].source.host_organization_lineage_names | EDP Sciences |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.itm-conferences.org/articles/itmconf/pdf/2025/09/itmconf_cseit2025_03006.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | ITM Web of Conferences |
| locations[0].landing_page_url | https://doi.org/10.1051/itmconf/20257803006 |
| locations[1].id | pmh:oai:doaj.org/article:da40a11e74b943e8a8a54292516b881d |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | ITM Web of Conferences, Vol 78, p 03006 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/da40a11e74b943e8a8a54292516b881d |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5108060216 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4554-455X |
| authorships[0].author.display_name | Linqiang Pan |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Peng Pan |
| authorships[0].is_corresponding | True |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.itm-conferences.org/articles/itmconf/pdf/2025/09/itmconf_cseit2025_03006.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-09-09T00:00:00 |
| display_name | Small Target Detection in Human-Robot Interaction: A Research and Application Analysis |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12389 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.49480000138282776 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2202 |
| primary_topic.subfield.display_name | Aerospace Engineering |
| primary_topic.display_name | Infrared Target Detection Methodologies |
| related_works | https://openalex.org/W2978665606, https://openalex.org/W3205513966, https://openalex.org/W3120459843, https://openalex.org/W4366547574, https://openalex.org/W189465620, https://openalex.org/W4366818884, https://openalex.org/W2248308732, https://openalex.org/W4392651289, https://openalex.org/W3042490037, https://openalex.org/W4380487215 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1051/itmconf/20257803006 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210171711 |
| best_oa_location.source.issn | 2271-2097, 2431-7578 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2271-2097 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | ITM Web of Conferences |
| best_oa_location.source.host_organization | https://openalex.org/P4310319748 |
| best_oa_location.source.host_organization_name | EDP Sciences |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319748 |
| best_oa_location.source.host_organization_lineage_names | EDP Sciences |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.itm-conferences.org/articles/itmconf/pdf/2025/09/itmconf_cseit2025_03006.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | ITM Web of Conferences |
| best_oa_location.landing_page_url | https://doi.org/10.1051/itmconf/20257803006 |
| primary_location.id | doi:10.1051/itmconf/20257803006 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210171711 |
| primary_location.source.issn | 2271-2097, 2431-7578 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2271-2097 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | ITM Web of Conferences |
| primary_location.source.host_organization | https://openalex.org/P4310319748 |
| primary_location.source.host_organization_name | EDP Sciences |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319748 |
| primary_location.source.host_organization_lineage_names | EDP Sciences |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.itm-conferences.org/articles/itmconf/pdf/2025/09/itmconf_cseit2025_03006.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | ITM Web of Conferences |
| primary_location.landing_page_url | https://doi.org/10.1051/itmconf/20257803006 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4409365059, https://openalex.org/W4408993183, https://openalex.org/W4405761372, https://openalex.org/W4402172635, https://openalex.org/W4403283407, https://openalex.org/W3004954129 |
| referenced_works_count | 6 |
| abstract_inverted_index.A | 56 |
| abstract_inverted_index.a | 28, 120 |
| abstract_inverted_index.as | 46, 99, 189 |
| abstract_inverted_index.at | 194 |
| abstract_inverted_index.by | 13, 155 |
| abstract_inverted_index.in | 22, 73, 84 |
| abstract_inverted_index.of | 2, 18, 31, 40, 59, 130 |
| abstract_inverted_index.to | 111, 116, 146 |
| abstract_inverted_index.30+ | 195 |
| abstract_inverted_index.The | 0, 87, 134 |
| abstract_inverted_index.and | 5, 53, 68, 78, 106, 128, 142, 162, 168 |
| abstract_inverted_index.for | 203 |
| abstract_inverted_index.has | 9 |
| abstract_inverted_index.per | 197 |
| abstract_inverted_index.the | 38, 100, 126, 148 |
| abstract_inverted_index.Mask | 64, 179 |
| abstract_inverted_index.SSD, | 66 |
| abstract_inverted_index.This | 25 |
| abstract_inverted_index.YOLO | 69 |
| abstract_inverted_index.data | 153 |
| abstract_inverted_index.deep | 138 |
| abstract_inverted_index.edge | 143 |
| abstract_inverted_index.from | 48, 152 |
| abstract_inverted_index.like | 178 |
| abstract_inverted_index.loss | 122 |
| abstract_inverted_index.more | 15 |
| abstract_inverted_index.such | 45, 98, 188 |
| abstract_inverted_index.that | 36, 92, 175 |
| abstract_inverted_index.them | 200 |
| abstract_inverted_index.with | 119 |
| abstract_inverted_index.R-CNN | 180 |
| abstract_inverted_index.depth | 163 |
| abstract_inverted_index.loss, | 75 |
| abstract_inverted_index.paper | 26 |
| abstract_inverted_index.robot | 6 |
| abstract_inverted_index.scale | 76 |
| abstract_inverted_index.small | 19, 131 |
| abstract_inverted_index.while | 184 |
| abstract_inverted_index.(AFPN) | 105 |
| abstract_inverted_index.Faster | 62 |
| abstract_inverted_index.R-CNN, | 63, 65 |
| abstract_inverted_index.during | 81 |
| abstract_inverted_index.frames | 196 |
| abstract_inverted_index.fusion | 96, 109 |
| abstract_inverted_index.highly | 201 |
| abstract_inverted_index.making | 199 |
| abstract_inverted_index.models | 177 |
| abstract_inverted_index.refine | 147 |
| abstract_inverted_index.remote | 32 |
| abstract_inverted_index.sensor | 140 |
| abstract_inverted_index.vision | 4, 7 |
| abstract_inverted_index.visual | 42 |
| abstract_inverted_index.Feature | 102 |
| abstract_inverted_index.Network | 104 |
| abstract_inverted_index.Pyramid | 103 |
| abstract_inverted_index.YOLO-v8 | 117, 190 |
| abstract_inverted_index.achieve | 191 |
| abstract_inverted_index.address | 37 |
| abstract_inverted_index.complex | 85 |
| abstract_inverted_index.deliver | 181 |
| abstract_inverted_index.dynamic | 204 |
| abstract_inverted_index.employs | 136 |
| abstract_inverted_index.enhance | 112 |
| abstract_inverted_index.feature | 74, 169 |
| abstract_inverted_index.further | 124 |
| abstract_inverted_index.fusion, | 141 |
| abstract_inverted_index.gesture | 33, 82, 132, 149 |
| abstract_inverted_index.improve | 125 |
| abstract_inverted_index.inputs, | 52 |
| abstract_inverted_index.partial | 54 |
| abstract_inverted_index.precise | 16 |
| abstract_inverted_index.results | 173 |
| abstract_inverted_index.second, | 198 |
| abstract_inverted_index.spatial | 108 |
| abstract_inverted_index.systems | 35 |
| abstract_inverted_index.various | 156 |
| abstract_inverted_index.Adaptive | 101 |
| abstract_inverted_index.accuracy | 127 |
| abstract_inverted_index.adaptive | 107 |
| abstract_inverted_index.advanced | 137 |
| abstract_inverted_index.analysis | 30 |
| abstract_inverted_index.approach | 135 |
| abstract_inverted_index.cameras, | 159, 161 |
| abstract_inverted_index.combined | 118 |
| abstract_inverted_index.computer | 3 |
| abstract_inverted_index.detailed | 57 |
| abstract_inverted_index.enabling | 14 |
| abstract_inverted_index.explores | 89 |
| abstract_inverted_index.function | 123 |
| abstract_inverted_index.indicate | 174 |
| abstract_inverted_index.methods, | 44, 97 |
| abstract_inverted_index.presents | 27 |
| abstract_inverted_index.process, | 151 |
| abstract_inverted_index.research | 88 |
| abstract_inverted_index.suitable | 202 |
| abstract_inverted_index.superior | 182 |
| abstract_inverted_index.targets, | 20 |
| abstract_inverted_index.accuracy, | 183 |
| abstract_inverted_index.cluttered | 49 |
| abstract_inverted_index.computing | 144 |
| abstract_inverted_index.detection | 17, 83, 113 |
| abstract_inverted_index.integrate | 93 |
| abstract_inverted_index.learning, | 139 |
| abstract_inverted_index.monocular | 158 |
| abstract_inverted_index.optimized | 185 |
| abstract_inverted_index.real-time | 192 |
| abstract_inverted_index.shape-IoU | 121 |
| abstract_inverted_index.RetinaNet, | 67 |
| abstract_inverted_index.challenges | 72 |
| abstract_inverted_index.frameworks | 187 |
| abstract_inverted_index.innovative | 90 |
| abstract_inverted_index.inspection | 43 |
| abstract_inverted_index.persistent | 71 |
| abstract_inverted_index.robustness | 129 |
| abstract_inverted_index.scenarios. | 86 |
| abstract_inverted_index.strategies | 91 |
| abstract_inverted_index.techniques | 8, 145 |
| abstract_inverted_index.Comparative | 171 |
| abstract_inverted_index.acquisition | 154 |
| abstract_inverted_index.advancement | 1 |
| abstract_inverted_index.challenging | 23 |
| abstract_inverted_index.extraction. | 170 |
| abstract_inverted_index.human-robot | 11 |
| abstract_inverted_index.interaction | 12 |
| abstract_inverted_index.lightweight | 186 |
| abstract_inverted_index.limitations | 39 |
| abstract_inverted_index.multi-scale | 94 |
| abstract_inverted_index.occlusions. | 55 |
| abstract_inverted_index.performance | 193 |
| abstract_inverted_index.progressive | 95 |
| abstract_inverted_index.recognition | 34, 150 |
| abstract_inverted_index.techniques, | 110 |
| abstract_inverted_index.traditional | 41 |
| abstract_inverted_index.Enhancements | 115 |
| abstract_inverted_index.backgrounds, | 50 |
| abstract_inverted_index.experimental | 172 |
| abstract_inverted_index.inefficiency | 80 |
| abstract_inverted_index.interference | 47 |
| abstract_inverted_index.multi-ocular | 160 |
| abstract_inverted_index.particularly | 21 |
| abstract_inverted_index.performance. | 114 |
| abstract_inverted_index.recognition. | 133 |
| abstract_inverted_index.sensitivity, | 77 |
| abstract_inverted_index.sensors—to | 164 |
| abstract_inverted_index.applications. | 205 |
| abstract_inverted_index.comprehensive | 29 |
| abstract_inverted_index.computational | 79 |
| abstract_inverted_index.environments. | 24 |
| abstract_inverted_index.investigation | 58 |
| abstract_inverted_index.segmentation, | 167 |
| abstract_inverted_index.sophisticated | 165 |
| abstract_inverted_index.high-precision | 176 |
| abstract_inverted_index.low-resolution | 51 |
| abstract_inverted_index.preprocessing, | 166 |
| abstract_inverted_index.revolutionized | 10 |
| abstract_inverted_index.state-of-the-art | 60 |
| abstract_inverted_index.variants—reveals | 70 |
| abstract_inverted_index.sensors—including | 157 |
| abstract_inverted_index.algorithms—including | 61 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5108060216 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| citation_normalized_percentile.value | 0.24599366 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |