Smallset Timelines: A Visual Representation of Data Preprocessing Decisions Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2206.04875
Data preprocessing is a crucial stage in the data analysis pipeline, with both technical and social aspects to consider. Yet, the attention it receives is often lacking in research practice and dissemination. We present the Smallset Timeline, a visualisation to help reflect on and communicate data preprocessing decisions. A "Smallset" is a small selection of rows from the original dataset containing instances of dataset alterations. The Timeline is comprised of Smallset snapshots representing different points in the preprocessing stage and captions to describe the alterations visualised at each point. Edits, additions, and deletions to the dataset are highlighted with colour. We develop the R software package, smallsets, that can create Smallset Timelines from R and Python data preprocessing scripts. Constructing the figure asks practitioners to reflect on and revise decisions as necessary, while sharing it aims to make the process accessible to a diverse range of audiences. We present two case studies to illustrate use of the Smallset Timeline for visualising preprocessing decisions. Case studies include software defect data and income survey benchmark data, in which preprocessing affects levels of data loss and group fairness in prediction tasks, respectively. We envision Smallset Timelines as a go-to data provenance tool, enabling better documentation and communication of preprocessing tasks at large.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2206.04875
- https://arxiv.org/pdf/2206.04875
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4320170012
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4320170012Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2206.04875Digital Object Identifier
- Title
-
Smallset Timelines: A Visual Representation of Data Preprocessing DecisionsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-06-10Full publication date if available
- Authors
-
Lydia R Lucchesi, Petra Kuhnert, Jenny Davis, Lexing XieList of authors in order
- Landing page
-
https://arxiv.org/abs/2206.04875Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2206.04875Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2206.04875Direct OA link when available
- Concepts
-
Timeline, Computer science, Preprocessor, Documentation, Python (programming language), Software, Visualization, Information retrieval, Scripting language, Data mining, Data science, World Wide Web, Artificial intelligence, Programming language, History, ArchaeologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4320170012 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2206.04875 |
| ids.doi | https://doi.org/10.48550/arxiv.2206.04875 |
| ids.openalex | https://openalex.org/W4320170012 |
| fwci | 0.0 |
| type | preprint |
| title | Smallset Timelines: A Visual Representation of Data Preprocessing Decisions |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T13398 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9868999719619751 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Data Analysis with R |
| topics[1].id | https://openalex.org/T11986 |
| topics[1].field.id | https://openalex.org/fields/18 |
| topics[1].field.display_name | Decision Sciences |
| topics[1].score | 0.9718999862670898 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1802 |
| topics[1].subfield.display_name | Information Systems and Management |
| topics[1].display_name | Scientific Computing and Data Management |
| topics[2].id | https://openalex.org/T10799 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.921500027179718 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Data Visualization and Analytics |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C4438859 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9378246068954468 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q186117 |
| concepts[0].display_name | Timeline |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.776435375213623 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C34736171 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7257091999053955 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q918333 |
| concepts[2].display_name | Preprocessor |
| concepts[3].id | https://openalex.org/C56666940 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6476371884346008 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q788790 |
| concepts[3].display_name | Documentation |
| concepts[4].id | https://openalex.org/C519991488 |
| concepts[4].level | 2 |
| concepts[4].score | 0.56437748670578 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q28865 |
| concepts[4].display_name | Python (programming language) |
| concepts[5].id | https://openalex.org/C2777904410 |
| concepts[5].level | 2 |
| concepts[5].score | 0.51505446434021 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7397 |
| concepts[5].display_name | Software |
| concepts[6].id | https://openalex.org/C36464697 |
| concepts[6].level | 2 |
| concepts[6].score | 0.507279098033905 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q451553 |
| concepts[6].display_name | Visualization |
| concepts[7].id | https://openalex.org/C23123220 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4809243381023407 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[7].display_name | Information retrieval |
| concepts[8].id | https://openalex.org/C61423126 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4317968487739563 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q187432 |
| concepts[8].display_name | Scripting language |
| concepts[9].id | https://openalex.org/C124101348 |
| concepts[9].level | 1 |
| concepts[9].score | 0.40147122740745544 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[9].display_name | Data mining |
| concepts[10].id | https://openalex.org/C2522767166 |
| concepts[10].level | 1 |
| concepts[10].score | 0.39751672744750977 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[10].display_name | Data science |
| concepts[11].id | https://openalex.org/C136764020 |
| concepts[11].level | 1 |
| concepts[11].score | 0.34568464756011963 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[11].display_name | World Wide Web |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.21555206179618835 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C199360897 |
| concepts[13].level | 1 |
| concepts[13].score | 0.18638020753860474 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[13].display_name | Programming language |
| concepts[14].id | https://openalex.org/C95457728 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q309 |
| concepts[14].display_name | History |
| concepts[15].id | https://openalex.org/C166957645 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[15].display_name | Archaeology |
| keywords[0].id | https://openalex.org/keywords/timeline |
| keywords[0].score | 0.9378246068954468 |
| keywords[0].display_name | Timeline |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.776435375213623 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/preprocessor |
| keywords[2].score | 0.7257091999053955 |
| keywords[2].display_name | Preprocessor |
| keywords[3].id | https://openalex.org/keywords/documentation |
| keywords[3].score | 0.6476371884346008 |
| keywords[3].display_name | Documentation |
| keywords[4].id | https://openalex.org/keywords/python |
| keywords[4].score | 0.56437748670578 |
| keywords[4].display_name | Python (programming language) |
| keywords[5].id | https://openalex.org/keywords/software |
| keywords[5].score | 0.51505446434021 |
| keywords[5].display_name | Software |
| keywords[6].id | https://openalex.org/keywords/visualization |
| keywords[6].score | 0.507279098033905 |
| keywords[6].display_name | Visualization |
| keywords[7].id | https://openalex.org/keywords/information-retrieval |
| keywords[7].score | 0.4809243381023407 |
| keywords[7].display_name | Information retrieval |
| keywords[8].id | https://openalex.org/keywords/scripting-language |
| keywords[8].score | 0.4317968487739563 |
| keywords[8].display_name | Scripting language |
| keywords[9].id | https://openalex.org/keywords/data-mining |
| keywords[9].score | 0.40147122740745544 |
| keywords[9].display_name | Data mining |
| keywords[10].id | https://openalex.org/keywords/data-science |
| keywords[10].score | 0.39751672744750977 |
| keywords[10].display_name | Data science |
| keywords[11].id | https://openalex.org/keywords/world-wide-web |
| keywords[11].score | 0.34568464756011963 |
| keywords[11].display_name | World Wide Web |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.21555206179618835 |
| keywords[12].display_name | Artificial intelligence |
| keywords[13].id | https://openalex.org/keywords/programming-language |
| keywords[13].score | 0.18638020753860474 |
| keywords[13].display_name | Programming language |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2206.04875 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2206.04875 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2206.04875 |
| locations[1].id | doi:10.48550/arxiv.2206.04875 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2206.04875 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5037258144 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1901-4301 |
| authorships[0].author.display_name | Lydia R Lucchesi |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lucchesi, Lydia R. |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5055776500 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9070-0091 |
| authorships[1].author.display_name | Petra Kuhnert |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kuhnert, Petra M. |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5008039226 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8041-4515 |
| authorships[2].author.display_name | Jenny Davis |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Davis, Jenny L. |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5049449495 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8319-0118 |
| authorships[3].author.display_name | Lexing Xie |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Xie, Lexing |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2206.04875 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-02-13T00:00:00 |
| display_name | Smallset Timelines: A Visual Representation of Data Preprocessing Decisions |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T13398 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9868999719619751 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Data Analysis with R |
| related_works | https://openalex.org/W3023169329, https://openalex.org/W4389470870, https://openalex.org/W2782165897, https://openalex.org/W1582950852, https://openalex.org/W4300438041, https://openalex.org/W2054104202, https://openalex.org/W2139703748, https://openalex.org/W2761254753, https://openalex.org/W1024825291, https://openalex.org/W2188981919 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2206.04875 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2206.04875 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2206.04875 |
| primary_location.id | pmh:oai:arXiv.org:2206.04875 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2206.04875 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2206.04875 |
| publication_date | 2022-06-10 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 48 |
| abstract_inverted_index.R | 103, 113 |
| abstract_inverted_index.a | 3, 37, 51, 142, 194 |
| abstract_inverted_index.We | 32, 100, 147, 189 |
| abstract_inverted_index.as | 130, 193 |
| abstract_inverted_index.at | 86, 207 |
| abstract_inverted_index.in | 6, 27, 75, 174, 185 |
| abstract_inverted_index.is | 2, 24, 50, 67 |
| abstract_inverted_index.it | 22, 134 |
| abstract_inverted_index.of | 54, 62, 69, 145, 155, 179, 204 |
| abstract_inverted_index.on | 42, 126 |
| abstract_inverted_index.to | 17, 39, 81, 93, 124, 136, 141, 152 |
| abstract_inverted_index.The | 65 |
| abstract_inverted_index.and | 14, 30, 43, 79, 91, 114, 127, 169, 182, 202 |
| abstract_inverted_index.are | 96 |
| abstract_inverted_index.can | 108 |
| abstract_inverted_index.for | 159 |
| abstract_inverted_index.the | 7, 20, 34, 57, 76, 83, 94, 102, 120, 138, 156 |
| abstract_inverted_index.two | 149 |
| abstract_inverted_index.use | 154 |
| abstract_inverted_index.Case | 163 |
| abstract_inverted_index.Data | 0 |
| abstract_inverted_index.Yet, | 19 |
| abstract_inverted_index.aims | 135 |
| abstract_inverted_index.asks | 122 |
| abstract_inverted_index.both | 12 |
| abstract_inverted_index.case | 150 |
| abstract_inverted_index.data | 8, 45, 116, 168, 180, 196 |
| abstract_inverted_index.each | 87 |
| abstract_inverted_index.from | 56, 112 |
| abstract_inverted_index.help | 40 |
| abstract_inverted_index.loss | 181 |
| abstract_inverted_index.make | 137 |
| abstract_inverted_index.rows | 55 |
| abstract_inverted_index.that | 107 |
| abstract_inverted_index.with | 11, 98 |
| abstract_inverted_index.data, | 173 |
| abstract_inverted_index.go-to | 195 |
| abstract_inverted_index.group | 183 |
| abstract_inverted_index.often | 25 |
| abstract_inverted_index.range | 144 |
| abstract_inverted_index.small | 52 |
| abstract_inverted_index.stage | 5, 78 |
| abstract_inverted_index.tasks | 206 |
| abstract_inverted_index.tool, | 198 |
| abstract_inverted_index.which | 175 |
| abstract_inverted_index.while | 132 |
| abstract_inverted_index.Edits, | 89 |
| abstract_inverted_index.Python | 115 |
| abstract_inverted_index.better | 200 |
| abstract_inverted_index.create | 109 |
| abstract_inverted_index.defect | 167 |
| abstract_inverted_index.figure | 121 |
| abstract_inverted_index.income | 170 |
| abstract_inverted_index.large. | 208 |
| abstract_inverted_index.levels | 178 |
| abstract_inverted_index.point. | 88 |
| abstract_inverted_index.points | 74 |
| abstract_inverted_index.revise | 128 |
| abstract_inverted_index.social | 15 |
| abstract_inverted_index.survey | 171 |
| abstract_inverted_index.tasks, | 187 |
| abstract_inverted_index.affects | 177 |
| abstract_inverted_index.aspects | 16 |
| abstract_inverted_index.colour. | 99 |
| abstract_inverted_index.crucial | 4 |
| abstract_inverted_index.dataset | 59, 63, 95 |
| abstract_inverted_index.develop | 101 |
| abstract_inverted_index.diverse | 143 |
| abstract_inverted_index.include | 165 |
| abstract_inverted_index.lacking | 26 |
| abstract_inverted_index.present | 33, 148 |
| abstract_inverted_index.process | 139 |
| abstract_inverted_index.reflect | 41, 125 |
| abstract_inverted_index.sharing | 133 |
| abstract_inverted_index.studies | 151, 164 |
| abstract_inverted_index.Smallset | 35, 70, 110, 157, 191 |
| abstract_inverted_index.Timeline | 66, 158 |
| abstract_inverted_index.analysis | 9 |
| abstract_inverted_index.captions | 80 |
| abstract_inverted_index.describe | 82 |
| abstract_inverted_index.enabling | 199 |
| abstract_inverted_index.envision | 190 |
| abstract_inverted_index.fairness | 184 |
| abstract_inverted_index.original | 58 |
| abstract_inverted_index.package, | 105 |
| abstract_inverted_index.practice | 29 |
| abstract_inverted_index.receives | 23 |
| abstract_inverted_index.research | 28 |
| abstract_inverted_index.scripts. | 118 |
| abstract_inverted_index.software | 104, 166 |
| abstract_inverted_index.Timeline, | 36 |
| abstract_inverted_index.Timelines | 111, 192 |
| abstract_inverted_index.attention | 21 |
| abstract_inverted_index.benchmark | 172 |
| abstract_inverted_index.comprised | 68 |
| abstract_inverted_index.consider. | 18 |
| abstract_inverted_index.decisions | 129 |
| abstract_inverted_index.deletions | 92 |
| abstract_inverted_index.different | 73 |
| abstract_inverted_index.instances | 61 |
| abstract_inverted_index.pipeline, | 10 |
| abstract_inverted_index.selection | 53 |
| abstract_inverted_index.snapshots | 71 |
| abstract_inverted_index.technical | 13 |
| abstract_inverted_index."Smallset" | 49 |
| abstract_inverted_index.accessible | 140 |
| abstract_inverted_index.additions, | 90 |
| abstract_inverted_index.audiences. | 146 |
| abstract_inverted_index.containing | 60 |
| abstract_inverted_index.decisions. | 47, 162 |
| abstract_inverted_index.illustrate | 153 |
| abstract_inverted_index.necessary, | 131 |
| abstract_inverted_index.prediction | 186 |
| abstract_inverted_index.provenance | 197 |
| abstract_inverted_index.smallsets, | 106 |
| abstract_inverted_index.visualised | 85 |
| abstract_inverted_index.alterations | 84 |
| abstract_inverted_index.communicate | 44 |
| abstract_inverted_index.highlighted | 97 |
| abstract_inverted_index.visualising | 160 |
| abstract_inverted_index.Constructing | 119 |
| abstract_inverted_index.alterations. | 64 |
| abstract_inverted_index.representing | 72 |
| abstract_inverted_index.communication | 203 |
| abstract_inverted_index.documentation | 201 |
| abstract_inverted_index.practitioners | 123 |
| abstract_inverted_index.preprocessing | 1, 46, 77, 117, 161, 176, 205 |
| abstract_inverted_index.respectively. | 188 |
| abstract_inverted_index.visualisation | 38 |
| abstract_inverted_index.dissemination. | 31 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/1 |
| sustainable_development_goals[0].score | 0.7300000190734863 |
| sustainable_development_goals[0].display_name | No poverty |
| citation_normalized_percentile |