Smart Home Energy Management: Sequence-to-Sequence Load Forecasting and Q-Learning Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2109.12440
A smart home energy management system (HEMS) can contribute towards reducing the energy costs of customers; however, HEMS suffers from uncertainty in both energy generation and consumption patterns. In this paper, we propose a sequence to sequence (Seq2Seq) learning-based supply and load prediction along with reinforcement learning-based HEMS control. We investigate how the prediction method affects the HEMS operation. First, we use Seq2Seq learning to predict photovoltaic (PV) power and home devices' load. We then apply Q-learning for offline optimization of HEMS based on the prediction results. Finally, we test the online performance of the trained Q-learning scheme with actual PV and load data. The Seq2Seq learning is compared with VARMA, SVR, and LSTM in both prediction and operation levels. The simulation results show that Seq2Seq performs better with a lower prediction error and online operation performance.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2109.12440
- https://arxiv.org/pdf/2109.12440
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4286961796
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4286961796Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2109.12440Digital Object Identifier
- Title
-
Smart Home Energy Management: Sequence-to-Sequence Load Forecasting and Q-LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-09-25Full publication date if available
- Authors
-
Mina Razghandi, Hao Zhou, Melike Erol‐Kantarci, Damla TurgutList of authors in order
- Landing page
-
https://arxiv.org/abs/2109.12440Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2109.12440Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2109.12440Direct OA link when available
- Concepts
-
Computer science, Reinforcement learning, Sequence (biology), Energy management, Photovoltaic system, Artificial intelligence, Scheme (mathematics), Energy (signal processing), Energy management system, Machine learning, Sequence learning, Smart grid, Real-time computing, Engineering, Biology, Mathematical analysis, Electrical engineering, Genetics, Mathematics, StatisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4286961796 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2109.12440 |
| ids.doi | https://doi.org/10.48550/arxiv.2109.12440 |
| ids.openalex | https://openalex.org/W4286961796 |
| fwci | |
| type | preprint |
| title | Smart Home Energy Management: Sequence-to-Sequence Load Forecasting and Q-Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10603 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9993000030517578 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Smart Grid Energy Management |
| topics[1].id | https://openalex.org/T11052 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9983999729156494 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Energy Load and Power Forecasting |
| topics[2].id | https://openalex.org/T11276 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9769999980926514 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Solar Radiation and Photovoltaics |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6956460475921631 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C97541855 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6675998568534851 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q830687 |
| concepts[1].display_name | Reinforcement learning |
| concepts[2].id | https://openalex.org/C2778112365 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6186350584030151 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3511065 |
| concepts[2].display_name | Sequence (biology) |
| concepts[3].id | https://openalex.org/C7817414 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5878791213035583 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1779504 |
| concepts[3].display_name | Energy management |
| concepts[4].id | https://openalex.org/C41291067 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5200079083442688 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1897785 |
| concepts[4].display_name | Photovoltaic system |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5005900859832764 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C77618280 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4953674077987671 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1155772 |
| concepts[6].display_name | Scheme (mathematics) |
| concepts[7].id | https://openalex.org/C186370098 |
| concepts[7].level | 2 |
| concepts[7].score | 0.49280574917793274 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q442787 |
| concepts[7].display_name | Energy (signal processing) |
| concepts[8].id | https://openalex.org/C2781260460 |
| concepts[8].level | 4 |
| concepts[8].score | 0.47166287899017334 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q6139999 |
| concepts[8].display_name | Energy management system |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4510091245174408 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C40506919 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4480293095111847 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7452469 |
| concepts[10].display_name | Sequence learning |
| concepts[11].id | https://openalex.org/C10558101 |
| concepts[11].level | 2 |
| concepts[11].score | 0.42848116159439087 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q689855 |
| concepts[11].display_name | Smart grid |
| concepts[12].id | https://openalex.org/C79403827 |
| concepts[12].level | 1 |
| concepts[12].score | 0.33009952306747437 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[12].display_name | Real-time computing |
| concepts[13].id | https://openalex.org/C127413603 |
| concepts[13].level | 0 |
| concepts[13].score | 0.19830575585365295 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[13].display_name | Engineering |
| concepts[14].id | https://openalex.org/C86803240 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[14].display_name | Biology |
| concepts[15].id | https://openalex.org/C134306372 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[15].display_name | Mathematical analysis |
| concepts[16].id | https://openalex.org/C119599485 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[16].display_name | Electrical engineering |
| concepts[17].id | https://openalex.org/C54355233 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[17].display_name | Genetics |
| concepts[18].id | https://openalex.org/C33923547 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[18].display_name | Mathematics |
| concepts[19].id | https://openalex.org/C105795698 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[19].display_name | Statistics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6956460475921631 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/reinforcement-learning |
| keywords[1].score | 0.6675998568534851 |
| keywords[1].display_name | Reinforcement learning |
| keywords[2].id | https://openalex.org/keywords/sequence |
| keywords[2].score | 0.6186350584030151 |
| keywords[2].display_name | Sequence (biology) |
| keywords[3].id | https://openalex.org/keywords/energy-management |
| keywords[3].score | 0.5878791213035583 |
| keywords[3].display_name | Energy management |
| keywords[4].id | https://openalex.org/keywords/photovoltaic-system |
| keywords[4].score | 0.5200079083442688 |
| keywords[4].display_name | Photovoltaic system |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5005900859832764 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/scheme |
| keywords[6].score | 0.4953674077987671 |
| keywords[6].display_name | Scheme (mathematics) |
| keywords[7].id | https://openalex.org/keywords/energy |
| keywords[7].score | 0.49280574917793274 |
| keywords[7].display_name | Energy (signal processing) |
| keywords[8].id | https://openalex.org/keywords/energy-management-system |
| keywords[8].score | 0.47166287899017334 |
| keywords[8].display_name | Energy management system |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.4510091245174408 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/sequence-learning |
| keywords[10].score | 0.4480293095111847 |
| keywords[10].display_name | Sequence learning |
| keywords[11].id | https://openalex.org/keywords/smart-grid |
| keywords[11].score | 0.42848116159439087 |
| keywords[11].display_name | Smart grid |
| keywords[12].id | https://openalex.org/keywords/real-time-computing |
| keywords[12].score | 0.33009952306747437 |
| keywords[12].display_name | Real-time computing |
| keywords[13].id | https://openalex.org/keywords/engineering |
| keywords[13].score | 0.19830575585365295 |
| keywords[13].display_name | Engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2109.12440 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2109.12440 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2109.12440 |
| locations[1].id | doi:10.48550/arxiv.2109.12440 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2109.12440 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5070594349 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0649-3988 |
| authorships[0].author.display_name | Mina Razghandi |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Razghandi, Mina |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100396802 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7339-9006 |
| authorships[1].author.display_name | Hao Zhou |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhou, Hao |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5089891162 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6787-8457 |
| authorships[2].author.display_name | Melike Erol‐Kantarci |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Erol-Kantarci, Melike |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5068888332 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8635-7198 |
| authorships[3].author.display_name | Damla Turgut |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Turgut, Damla |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2109.12440 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-07-25T00:00:00 |
| display_name | Smart Home Energy Management: Sequence-to-Sequence Load Forecasting and Q-Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10603 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9993000030517578 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Smart Grid Energy Management |
| related_works | https://openalex.org/W2749199243, https://openalex.org/W2333017163, https://openalex.org/W2362940481, https://openalex.org/W4385360524, https://openalex.org/W2133545517, https://openalex.org/W2352231626, https://openalex.org/W2964681094, https://openalex.org/W2782741053, https://openalex.org/W4312501103, https://openalex.org/W3037868018 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2109.12440 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2109.12440 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2109.12440 |
| primary_location.id | pmh:oai:arXiv.org:2109.12440 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2109.12440 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2109.12440 |
| publication_date | 2021-09-25 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 0 |
| abstract_inverted_index.a | 33, 129 |
| abstract_inverted_index.In | 28 |
| abstract_inverted_index.PV | 100 |
| abstract_inverted_index.We | 49, 73 |
| abstract_inverted_index.in | 21, 114 |
| abstract_inverted_index.is | 107 |
| abstract_inverted_index.of | 14, 80, 93 |
| abstract_inverted_index.on | 83 |
| abstract_inverted_index.to | 35, 64 |
| abstract_inverted_index.we | 31, 60, 88 |
| abstract_inverted_index.The | 104, 120 |
| abstract_inverted_index.and | 25, 40, 69, 101, 112, 117, 133 |
| abstract_inverted_index.can | 7 |
| abstract_inverted_index.for | 77 |
| abstract_inverted_index.how | 51 |
| abstract_inverted_index.the | 11, 52, 56, 84, 90, 94 |
| abstract_inverted_index.use | 61 |
| abstract_inverted_index.(PV) | 67 |
| abstract_inverted_index.HEMS | 17, 47, 57, 81 |
| abstract_inverted_index.LSTM | 113 |
| abstract_inverted_index.SVR, | 111 |
| abstract_inverted_index.both | 22, 115 |
| abstract_inverted_index.from | 19 |
| abstract_inverted_index.home | 2, 70 |
| abstract_inverted_index.load | 41, 102 |
| abstract_inverted_index.show | 123 |
| abstract_inverted_index.test | 89 |
| abstract_inverted_index.that | 124 |
| abstract_inverted_index.then | 74 |
| abstract_inverted_index.this | 29 |
| abstract_inverted_index.with | 44, 98, 109, 128 |
| abstract_inverted_index.along | 43 |
| abstract_inverted_index.apply | 75 |
| abstract_inverted_index.based | 82 |
| abstract_inverted_index.costs | 13 |
| abstract_inverted_index.data. | 103 |
| abstract_inverted_index.error | 132 |
| abstract_inverted_index.load. | 72 |
| abstract_inverted_index.lower | 130 |
| abstract_inverted_index.power | 68 |
| abstract_inverted_index.smart | 1 |
| abstract_inverted_index.(HEMS) | 6 |
| abstract_inverted_index.First, | 59 |
| abstract_inverted_index.VARMA, | 110 |
| abstract_inverted_index.actual | 99 |
| abstract_inverted_index.better | 127 |
| abstract_inverted_index.energy | 3, 12, 23 |
| abstract_inverted_index.method | 54 |
| abstract_inverted_index.online | 91, 134 |
| abstract_inverted_index.paper, | 30 |
| abstract_inverted_index.scheme | 97 |
| abstract_inverted_index.supply | 39 |
| abstract_inverted_index.system | 5 |
| abstract_inverted_index.Seq2Seq | 62, 105, 125 |
| abstract_inverted_index.affects | 55 |
| abstract_inverted_index.levels. | 119 |
| abstract_inverted_index.offline | 78 |
| abstract_inverted_index.predict | 65 |
| abstract_inverted_index.propose | 32 |
| abstract_inverted_index.results | 122 |
| abstract_inverted_index.suffers | 18 |
| abstract_inverted_index.towards | 9 |
| abstract_inverted_index.trained | 95 |
| abstract_inverted_index.Finally, | 87 |
| abstract_inverted_index.compared | 108 |
| abstract_inverted_index.control. | 48 |
| abstract_inverted_index.devices' | 71 |
| abstract_inverted_index.however, | 16 |
| abstract_inverted_index.learning | 63, 106 |
| abstract_inverted_index.performs | 126 |
| abstract_inverted_index.reducing | 10 |
| abstract_inverted_index.results. | 86 |
| abstract_inverted_index.sequence | 34, 36 |
| abstract_inverted_index.(Seq2Seq) | 37 |
| abstract_inverted_index.operation | 118, 135 |
| abstract_inverted_index.patterns. | 27 |
| abstract_inverted_index.Q-learning | 76, 96 |
| abstract_inverted_index.contribute | 8 |
| abstract_inverted_index.customers; | 15 |
| abstract_inverted_index.generation | 24 |
| abstract_inverted_index.management | 4 |
| abstract_inverted_index.operation. | 58 |
| abstract_inverted_index.prediction | 42, 53, 85, 116, 131 |
| abstract_inverted_index.simulation | 121 |
| abstract_inverted_index.consumption | 26 |
| abstract_inverted_index.investigate | 50 |
| abstract_inverted_index.performance | 92 |
| abstract_inverted_index.uncertainty | 20 |
| abstract_inverted_index.optimization | 79 |
| abstract_inverted_index.performance. | 136 |
| abstract_inverted_index.photovoltaic | 66 |
| abstract_inverted_index.reinforcement | 45 |
| abstract_inverted_index.learning-based | 38, 46 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.8999999761581421 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile |