Smart Home Value Prediction Using Machine Learning Techniques Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.30534/ijatcse/2020/295952020
The home loan showcase is one among the most market driven and wavering organizations.One of the significant fields in this is applying the AI systems as to how to improve and foresee productivity with high precision.There are three elements influencing a house value which incorporate physical conditions, ideas, and area.The present system includes estimating the house costs with no market cost projections and cost increments.The point in this paper is to anticipate private costs for clients in view of their monetary idea and needs.By separating past business patterns and worth levels, and gaining future ground, costs are anticipated.This test implies anticipating house costs with Random Forest algorithm in Mumbai city.It will assist customers by avoiding paying of cash by going towards an intermediary.The after effect of this exploration demonstrated that random forest gives a slight base mistake of expectation that is 0.349.The experiment results shows that the proposed method is better in prediction and efficiency.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- http://doi.org/10.30534/ijatcse/2020/295952020
- https://doi.org/10.30534/ijatcse/2020/295952020
- OA Status
- bronze
- Cited By
- 3
- References
- 6
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4234375723
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4234375723Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.30534/ijatcse/2020/295952020Digital Object Identifier
- Title
-
Smart Home Value Prediction Using Machine Learning TechniquesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-10-15Full publication date if available
- Authors
-
Abdul Saleem Javeed, Tanveer Ahmed, C. Gopala Krishnan, Beena G PillaiList of authors in order
- Landing page
-
https://doi.org/10.30534/ijatcse/2020/295952020Publisher landing page
- PDF URL
-
https://doi.org/10.30534/ijatcse/2020/295952020Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.30534/ijatcse/2020/295952020Direct OA link when available
- Concepts
-
Machine learning, Computer science, Artificial intelligence, Value (mathematics)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1, 2022: 2Per-year citation counts (last 5 years)
- References (count)
-
6Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4234375723 |
|---|---|
| doi | https://doi.org/10.30534/ijatcse/2020/295952020 |
| ids.doi | https://doi.org/10.30534/ijatcse/2020/295952020 |
| ids.openalex | https://openalex.org/W4234375723 |
| fwci | 0.58571995 |
| type | article |
| title | Smart Home Value Prediction Using Machine Learning Techniques |
| biblio.issue | 5 |
| biblio.volume | 9 |
| biblio.last_page | 8956 |
| biblio.first_page | 8952 |
| topics[0].id | https://openalex.org/T11536 |
| topics[0].field.id | https://openalex.org/fields/14 |
| topics[0].field.display_name | Business, Management and Accounting |
| topics[0].score | 0.5171999931335449 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1406 |
| topics[0].subfield.display_name | Marketing |
| topics[0].display_name | Consumer Retail Behavior Studies |
| topics[1].id | https://openalex.org/T14260 |
| topics[1].field.id | https://openalex.org/fields/18 |
| topics[1].field.display_name | Decision Sciences |
| topics[1].score | 0.46309998631477356 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1803 |
| topics[1].subfield.display_name | Management Science and Operations Research |
| topics[1].display_name | Impact of AI and Big Data on Business and Society |
| topics[2].id | https://openalex.org/T13693 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.4528000056743622 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1705 |
| topics[2].subfield.display_name | Computer Networks and Communications |
| topics[2].display_name | Smart Systems and Machine Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C119857082 |
| concepts[0].level | 1 |
| concepts[0].score | 0.5698582530021667 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[0].display_name | Machine learning |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5241401791572571 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.4895552098751068 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C2776291640 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4772324860095978 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2912517 |
| concepts[3].display_name | Value (mathematics) |
| keywords[0].id | https://openalex.org/keywords/machine-learning |
| keywords[0].score | 0.5698582530021667 |
| keywords[0].display_name | Machine learning |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5241401791572571 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.4895552098751068 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/value |
| keywords[3].score | 0.4772324860095978 |
| keywords[3].display_name | Value (mathematics) |
| language | en |
| locations[0].id | doi:10.30534/ijatcse/2020/295952020 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210180821 |
| locations[0].source.issn | 2278-3091 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2278-3091 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Advanced Trends in Computer Science and Engineering |
| locations[0].source.host_organization | https://openalex.org/P4327872811 |
| locations[0].source.host_organization_name | The World Academy of Research in Science and Engineering |
| locations[0].source.host_organization_lineage | https://openalex.org/P4327872811 |
| locations[0].source.host_organization_lineage_names | The World Academy of Research in Science and Engineering |
| locations[0].license | |
| locations[0].pdf_url | https://doi.org/10.30534/ijatcse/2020/295952020 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Advanced Trends in Computer Science and Engineering |
| locations[0].landing_page_url | http://doi.org/10.30534/ijatcse/2020/295952020 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5092914901 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3815-2766 |
| authorships[0].author.display_name | Abdul Saleem Javeed |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I885392262 |
| authorships[0].affiliations[0].raw_affiliation_string | Assistant Professor, Dept. of CSE, GITAM (Deemed to be University), Bengaluru, India, |
| authorships[0].institutions[0].id | https://openalex.org/I885392262 |
| authorships[0].institutions[0].ror | https://ror.org/0440p1d37 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I885392262 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | GITAM University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Abdul Saleem Javeed |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Assistant Professor, Dept. of CSE, GITAM (Deemed to be University), Bengaluru, India, |
| authorships[1].author.id | https://openalex.org/A5100758414 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2791-7540 |
| authorships[1].author.display_name | Tanveer Ahmed |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I885392262 |
| authorships[1].affiliations[0].raw_affiliation_string | Assistant Professor, Dept. of CSE, GITAM (Deemed to be University), Bengaluru, India, |
| authorships[1].institutions[0].id | https://openalex.org/I885392262 |
| authorships[1].institutions[0].ror | https://ror.org/0440p1d37 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I885392262 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | GITAM University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tanveer Ahmed |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Assistant Professor, Dept. of CSE, GITAM (Deemed to be University), Bengaluru, India, |
| authorships[2].author.id | https://openalex.org/A5028039235 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | C. Gopala Krishnan |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I885392262 |
| authorships[2].affiliations[0].raw_affiliation_string | Associate Professor, Dept. of CSE, GITAM (Deemed to be University), Bengaluru, India, |
| authorships[2].institutions[0].id | https://openalex.org/I885392262 |
| authorships[2].institutions[0].ror | https://ror.org/0440p1d37 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I885392262 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | GITAM University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | C Gopala Krishnan |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Associate Professor, Dept. of CSE, GITAM (Deemed to be University), Bengaluru, India, |
| authorships[3].author.id | https://openalex.org/A5027727504 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Beena G Pillai |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I885392262 |
| authorships[3].affiliations[0].raw_affiliation_string | Assistant Professor, Dept. of CSE, GITAM (Deemed to be University), Bengaluru, India, |
| authorships[3].institutions[0].id | https://openalex.org/I885392262 |
| authorships[3].institutions[0].ror | https://ror.org/0440p1d37 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I885392262 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | GITAM University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Beena Pillai |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Assistant Professor, Dept. of CSE, GITAM (Deemed to be University), Bengaluru, India, |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.30534/ijatcse/2020/295952020 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-05-12T00:00:00 |
| display_name | Smart Home Value Prediction Using Machine Learning Techniques |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11536 |
| primary_topic.field.id | https://openalex.org/fields/14 |
| primary_topic.field.display_name | Business, Management and Accounting |
| primary_topic.score | 0.5171999931335449 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1406 |
| primary_topic.subfield.display_name | Marketing |
| primary_topic.display_name | Consumer Retail Behavior Studies |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W4224009465, https://openalex.org/W4286629047, https://openalex.org/W4306321456, https://openalex.org/W4285260836, https://openalex.org/W3046775127, https://openalex.org/W4205958290, https://openalex.org/W3107474891, https://openalex.org/W3209574120 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.30534/ijatcse/2020/295952020 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210180821 |
| best_oa_location.source.issn | 2278-3091 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2278-3091 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Advanced Trends in Computer Science and Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4327872811 |
| best_oa_location.source.host_organization_name | The World Academy of Research in Science and Engineering |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4327872811 |
| best_oa_location.source.host_organization_lineage_names | The World Academy of Research in Science and Engineering |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://doi.org/10.30534/ijatcse/2020/295952020 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Advanced Trends in Computer Science and Engineering |
| best_oa_location.landing_page_url | http://doi.org/10.30534/ijatcse/2020/295952020 |
| primary_location.id | doi:10.30534/ijatcse/2020/295952020 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210180821 |
| primary_location.source.issn | 2278-3091 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2278-3091 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Advanced Trends in Computer Science and Engineering |
| primary_location.source.host_organization | https://openalex.org/P4327872811 |
| primary_location.source.host_organization_name | The World Academy of Research in Science and Engineering |
| primary_location.source.host_organization_lineage | https://openalex.org/P4327872811 |
| primary_location.source.host_organization_lineage_names | The World Academy of Research in Science and Engineering |
| primary_location.license | |
| primary_location.pdf_url | https://doi.org/10.30534/ijatcse/2020/295952020 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Advanced Trends in Computer Science and Engineering |
| primary_location.landing_page_url | http://doi.org/10.30534/ijatcse/2020/295952020 |
| publication_date | 2020-10-15 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2018120288, https://openalex.org/W2534650598, https://openalex.org/W2982386625, https://openalex.org/W3166171474, https://openalex.org/W3159782251, https://openalex.org/W4384197055 |
| referenced_works_count | 6 |
| abstract_inverted_index.a | 40, 133 |
| abstract_inverted_index.AI | 23 |
| abstract_inverted_index.an | 121 |
| abstract_inverted_index.as | 25 |
| abstract_inverted_index.by | 113, 118 |
| abstract_inverted_index.in | 18, 66, 76, 107, 151 |
| abstract_inverted_index.is | 4, 20, 69, 140, 149 |
| abstract_inverted_index.no | 58 |
| abstract_inverted_index.of | 14, 78, 116, 125, 137 |
| abstract_inverted_index.to | 26, 28, 70 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 11, 30, 48, 62, 82, 88, 91, 153 |
| abstract_inverted_index.are | 36, 96 |
| abstract_inverted_index.for | 74 |
| abstract_inverted_index.how | 27 |
| abstract_inverted_index.one | 5 |
| abstract_inverted_index.the | 7, 15, 22, 54, 146 |
| abstract_inverted_index.base | 135 |
| abstract_inverted_index.cash | 117 |
| abstract_inverted_index.cost | 60, 63 |
| abstract_inverted_index.high | 34 |
| abstract_inverted_index.home | 1 |
| abstract_inverted_index.idea | 81 |
| abstract_inverted_index.loan | 2 |
| abstract_inverted_index.most | 8 |
| abstract_inverted_index.past | 85 |
| abstract_inverted_index.test | 98 |
| abstract_inverted_index.that | 129, 139, 145 |
| abstract_inverted_index.this | 19, 67, 126 |
| abstract_inverted_index.view | 77 |
| abstract_inverted_index.will | 110 |
| abstract_inverted_index.with | 33, 57, 103 |
| abstract_inverted_index.after | 123 |
| abstract_inverted_index.among | 6 |
| abstract_inverted_index.costs | 56, 73, 95, 102 |
| abstract_inverted_index.gives | 132 |
| abstract_inverted_index.going | 119 |
| abstract_inverted_index.house | 41, 55, 101 |
| abstract_inverted_index.paper | 68 |
| abstract_inverted_index.point | 65 |
| abstract_inverted_index.shows | 144 |
| abstract_inverted_index.their | 79 |
| abstract_inverted_index.three | 37 |
| abstract_inverted_index.value | 42 |
| abstract_inverted_index.which | 43 |
| abstract_inverted_index.worth | 89 |
| abstract_inverted_index.Forest | 105 |
| abstract_inverted_index.Mumbai | 108 |
| abstract_inverted_index.Random | 104 |
| abstract_inverted_index.assist | 111 |
| abstract_inverted_index.better | 150 |
| abstract_inverted_index.driven | 10 |
| abstract_inverted_index.effect | 124 |
| abstract_inverted_index.fields | 17 |
| abstract_inverted_index.forest | 131 |
| abstract_inverted_index.future | 93 |
| abstract_inverted_index.ideas, | 47 |
| abstract_inverted_index.market | 9, 59 |
| abstract_inverted_index.method | 148 |
| abstract_inverted_index.paying | 115 |
| abstract_inverted_index.random | 130 |
| abstract_inverted_index.slight | 134 |
| abstract_inverted_index.system | 51 |
| abstract_inverted_index.city.It | 109 |
| abstract_inverted_index.clients | 75 |
| abstract_inverted_index.foresee | 31 |
| abstract_inverted_index.gaining | 92 |
| abstract_inverted_index.ground, | 94 |
| abstract_inverted_index.implies | 99 |
| abstract_inverted_index.improve | 29 |
| abstract_inverted_index.levels, | 90 |
| abstract_inverted_index.mistake | 136 |
| abstract_inverted_index.present | 50 |
| abstract_inverted_index.private | 72 |
| abstract_inverted_index.results | 143 |
| abstract_inverted_index.systems | 24 |
| abstract_inverted_index.towards | 120 |
| abstract_inverted_index.applying | 21 |
| abstract_inverted_index.area.The | 49 |
| abstract_inverted_index.avoiding | 114 |
| abstract_inverted_index.business | 86 |
| abstract_inverted_index.elements | 38 |
| abstract_inverted_index.includes | 52 |
| abstract_inverted_index.monetary | 80 |
| abstract_inverted_index.needs.By | 83 |
| abstract_inverted_index.patterns | 87 |
| abstract_inverted_index.physical | 45 |
| abstract_inverted_index.proposed | 147 |
| abstract_inverted_index.showcase | 3 |
| abstract_inverted_index.wavering | 12 |
| abstract_inverted_index.0.349.The | 141 |
| abstract_inverted_index.algorithm | 106 |
| abstract_inverted_index.customers | 112 |
| abstract_inverted_index.anticipate | 71 |
| abstract_inverted_index.estimating | 53 |
| abstract_inverted_index.experiment | 142 |
| abstract_inverted_index.prediction | 152 |
| abstract_inverted_index.separating | 84 |
| abstract_inverted_index.conditions, | 46 |
| abstract_inverted_index.efficiency. | 154 |
| abstract_inverted_index.expectation | 138 |
| abstract_inverted_index.exploration | 127 |
| abstract_inverted_index.incorporate | 44 |
| abstract_inverted_index.influencing | 39 |
| abstract_inverted_index.projections | 61 |
| abstract_inverted_index.significant | 16 |
| abstract_inverted_index.anticipating | 100 |
| abstract_inverted_index.demonstrated | 128 |
| abstract_inverted_index.productivity | 32 |
| abstract_inverted_index.increments.The | 64 |
| abstract_inverted_index.precision.There | 35 |
| abstract_inverted_index.anticipated.This | 97 |
| abstract_inverted_index.intermediary.The | 122 |
| abstract_inverted_index.organizations.One | 13 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.77259309 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |