SMART: Towards Pre-trained Missing-Aware Model for Patient Health Status Prediction Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2405.09039
Electronic health record (EHR) data has emerged as a valuable resource for analyzing patient health status. However, the prevalence of missing data in EHR poses significant challenges to existing methods, leading to spurious correlations and suboptimal predictions. While various imputation techniques have been developed to address this issue, they often obsess unnecessary details and may introduce additional noise when making clinical predictions. To tackle this problem, we propose SMART, a Self-Supervised Missing-Aware RepresenTation Learning approach for patient health status prediction, which encodes missing information via elaborated attentions and learns to impute missing values through a novel self-supervised pre-training approach that reconstructs missing data representations in the latent space. By adopting missing-aware attentions and focusing on learning higher-order representations, SMART promotes better generalization and robustness to missing data. We validate the effectiveness of SMART through extensive experiments on six EHR tasks, demonstrating its superiority over state-of-the-art methods.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2405.09039
- https://arxiv.org/pdf/2405.09039
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4396986769
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4396986769Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2405.09039Digital Object Identifier
- Title
-
SMART: Towards Pre-trained Missing-Aware Model for Patient Health Status PredictionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-05-15Full publication date if available
- Authors
-
Zhihao Yu, Xu Chu, Yujie Jin, Yasha Wang, Junfeng ZhaoList of authors in order
- Landing page
-
https://arxiv.org/abs/2405.09039Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2405.09039Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2405.09039Direct OA link when available
- Concepts
-
Missing data, Computer science, Artificial intelligence, Machine learning, PsychologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4396986769 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2405.09039 |
| ids.doi | https://doi.org/10.48550/arxiv.2405.09039 |
| ids.openalex | https://openalex.org/W4396986769 |
| fwci | |
| type | preprint |
| title | SMART: Towards Pre-trained Missing-Aware Model for Patient Health Status Prediction |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T13702 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.984000027179718 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Machine Learning in Healthcare |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C9357733 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5026664733886719 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q6878417 |
| concepts[0].display_name | Missing data |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.45453765988349915 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.396768718957901 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.34175604581832886 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C15744967 |
| concepts[4].level | 0 |
| concepts[4].score | 0.3253691792488098 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[4].display_name | Psychology |
| keywords[0].id | https://openalex.org/keywords/missing-data |
| keywords[0].score | 0.5026664733886719 |
| keywords[0].display_name | Missing data |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.45453765988349915 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.396768718957901 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.34175604581832886 |
| keywords[3].display_name | Machine learning |
| keywords[4].id | https://openalex.org/keywords/psychology |
| keywords[4].score | 0.3253691792488098 |
| keywords[4].display_name | Psychology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2405.09039 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2405.09039 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2405.09039 |
| locations[1].id | doi:10.48550/arxiv.2405.09039 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2405.09039 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5026990863 |
| authorships[0].author.orcid | https://orcid.org/0009-0009-4233-9030 |
| authorships[0].author.display_name | Zhihao Yu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yu, Zhihao |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5111208159 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Xu Chu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chu, Xu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5102851700 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4284-7678 |
| authorships[2].author.display_name | Yujie Jin |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jin, Yujie |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5055336632 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8026-9688 |
| authorships[3].author.display_name | Yasha Wang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Wang, Yasha |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5078075142 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8750-0934 |
| authorships[4].author.display_name | Junfeng Zhao |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Zhao, Junfeng |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2405.09039 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | SMART: Towards Pre-trained Missing-Aware Model for Patient Health Status Prediction |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T13702 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.984000027179718 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Machine Learning in Healthcare |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W3046775127, https://openalex.org/W3107602296, https://openalex.org/W4394896187, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W4364306694 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2405.09039 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2405.09039 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2405.09039 |
| primary_location.id | pmh:oai:arXiv.org:2405.09039 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2405.09039 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2405.09039 |
| publication_date | 2024-05-15 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 8, 69, 94 |
| abstract_inverted_index.By | 108 |
| abstract_inverted_index.To | 62 |
| abstract_inverted_index.We | 127 |
| abstract_inverted_index.as | 7 |
| abstract_inverted_index.in | 22, 104 |
| abstract_inverted_index.of | 19, 131 |
| abstract_inverted_index.on | 114, 136 |
| abstract_inverted_index.to | 27, 31, 44, 89, 124 |
| abstract_inverted_index.we | 66 |
| abstract_inverted_index.EHR | 23, 138 |
| abstract_inverted_index.and | 34, 53, 87, 112, 122 |
| abstract_inverted_index.for | 11, 75 |
| abstract_inverted_index.has | 5 |
| abstract_inverted_index.its | 141 |
| abstract_inverted_index.may | 54 |
| abstract_inverted_index.six | 137 |
| abstract_inverted_index.the | 17, 105, 129 |
| abstract_inverted_index.via | 84 |
| abstract_inverted_index.been | 42 |
| abstract_inverted_index.data | 4, 21, 102 |
| abstract_inverted_index.have | 41 |
| abstract_inverted_index.over | 143 |
| abstract_inverted_index.that | 99 |
| abstract_inverted_index.they | 48 |
| abstract_inverted_index.this | 46, 64 |
| abstract_inverted_index.when | 58 |
| abstract_inverted_index.(EHR) | 3 |
| abstract_inverted_index.SMART | 118, 132 |
| abstract_inverted_index.While | 37 |
| abstract_inverted_index.data. | 126 |
| abstract_inverted_index.noise | 57 |
| abstract_inverted_index.novel | 95 |
| abstract_inverted_index.often | 49 |
| abstract_inverted_index.poses | 24 |
| abstract_inverted_index.which | 80 |
| abstract_inverted_index.SMART, | 68 |
| abstract_inverted_index.better | 120 |
| abstract_inverted_index.health | 1, 14, 77 |
| abstract_inverted_index.impute | 90 |
| abstract_inverted_index.issue, | 47 |
| abstract_inverted_index.latent | 106 |
| abstract_inverted_index.learns | 88 |
| abstract_inverted_index.making | 59 |
| abstract_inverted_index.obsess | 50 |
| abstract_inverted_index.record | 2 |
| abstract_inverted_index.space. | 107 |
| abstract_inverted_index.status | 78 |
| abstract_inverted_index.tackle | 63 |
| abstract_inverted_index.tasks, | 139 |
| abstract_inverted_index.values | 92 |
| abstract_inverted_index.address | 45 |
| abstract_inverted_index.details | 52 |
| abstract_inverted_index.emerged | 6 |
| abstract_inverted_index.encodes | 81 |
| abstract_inverted_index.leading | 30 |
| abstract_inverted_index.missing | 20, 82, 91, 101, 125 |
| abstract_inverted_index.patient | 13, 76 |
| abstract_inverted_index.propose | 67 |
| abstract_inverted_index.status. | 15 |
| abstract_inverted_index.through | 93, 133 |
| abstract_inverted_index.various | 38 |
| abstract_inverted_index.However, | 16 |
| abstract_inverted_index.Learning | 73 |
| abstract_inverted_index.adopting | 109 |
| abstract_inverted_index.approach | 74, 98 |
| abstract_inverted_index.clinical | 60 |
| abstract_inverted_index.existing | 28 |
| abstract_inverted_index.focusing | 113 |
| abstract_inverted_index.learning | 115 |
| abstract_inverted_index.methods, | 29 |
| abstract_inverted_index.methods. | 145 |
| abstract_inverted_index.problem, | 65 |
| abstract_inverted_index.promotes | 119 |
| abstract_inverted_index.resource | 10 |
| abstract_inverted_index.spurious | 32 |
| abstract_inverted_index.validate | 128 |
| abstract_inverted_index.valuable | 9 |
| abstract_inverted_index.analyzing | 12 |
| abstract_inverted_index.developed | 43 |
| abstract_inverted_index.extensive | 134 |
| abstract_inverted_index.introduce | 55 |
| abstract_inverted_index.Electronic | 0 |
| abstract_inverted_index.additional | 56 |
| abstract_inverted_index.attentions | 86, 111 |
| abstract_inverted_index.challenges | 26 |
| abstract_inverted_index.elaborated | 85 |
| abstract_inverted_index.imputation | 39 |
| abstract_inverted_index.prevalence | 18 |
| abstract_inverted_index.robustness | 123 |
| abstract_inverted_index.suboptimal | 35 |
| abstract_inverted_index.techniques | 40 |
| abstract_inverted_index.experiments | 135 |
| abstract_inverted_index.information | 83 |
| abstract_inverted_index.prediction, | 79 |
| abstract_inverted_index.significant | 25 |
| abstract_inverted_index.superiority | 142 |
| abstract_inverted_index.unnecessary | 51 |
| abstract_inverted_index.correlations | 33 |
| abstract_inverted_index.higher-order | 116 |
| abstract_inverted_index.pre-training | 97 |
| abstract_inverted_index.predictions. | 36, 61 |
| abstract_inverted_index.reconstructs | 100 |
| abstract_inverted_index.Missing-Aware | 71 |
| abstract_inverted_index.demonstrating | 140 |
| abstract_inverted_index.effectiveness | 130 |
| abstract_inverted_index.missing-aware | 110 |
| abstract_inverted_index.RepresenTation | 72 |
| abstract_inverted_index.generalization | 121 |
| abstract_inverted_index.Self-Supervised | 70 |
| abstract_inverted_index.representations | 103 |
| abstract_inverted_index.self-supervised | 96 |
| abstract_inverted_index.representations, | 117 |
| abstract_inverted_index.state-of-the-art | 144 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |