SMARTPHONE-BASED COMPRESSION-INDUCED IMAGING SYSTEM DATA SECURITY Article Swipe
The Smartphone-based Compression-Induced System (SCIS) is developed to obtain the mechanical properties of a tumor. Using a SCIS smartphone app, we obtain tactile images, and we developed data security methodology in this thesis. The first version of the system (SCIS V1) is developed using the symmetric key encryption, which protects all medical data from hackers. AES (Advanced Encryption Standard) encryption method is used to protect the data during the transmission. Encrypted data by AES is securely stored in the cloud server and used for processing in the local server. This security system uses Xcode and Python to encrypt and decrypt data. Even if the encrypted data is hacked, contents will be unreadable. In order to increase some of the scrutiny features of SCIS, we developed a new version. The second version (SCIS V2) includes the AES data encryption, the user authentication control, security key exchange system, and communication security. User authentication control part is the first step in preventing the accidental data leakage. Combining symmetric key encryption and asymmetric security key exchange is very effective to prevent attacks because the data and keys are encrypted before transmission. The data transmission protocol used in this system is also a secure protocol, which includes Secure Sockets Layer/Transport Layer Security (SSL/TLS). This protocol is the asymmetric encryption transmission protocol, which is used to transport encrypted data and encrypted keys in SCIS V2 systems. The Compression-Induced System Data Security is fully implemented in SCIS V2.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- http://hdl.handle.net/20.500.12613/3790
- http://hdl.handle.net/20.500.12613/3790
- OA Status
- green
- Related Works
- 19
- OpenAlex ID
- https://openalex.org/W3134820540
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3134820540Canonical identifier for this work in OpenAlex
- Title
-
SMARTPHONE-BASED COMPRESSION-INDUCED IMAGING SYSTEM DATA SECURITYWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-01-01Full publication date if available
- Authors
-
Zicong WangList of authors in order
- Landing page
-
https://hdl.handle.net/20.500.12613/3790Publisher landing page
- PDF URL
-
https://hdl.handle.net/20.500.12613/3790Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://hdl.handle.net/20.500.12613/3790Direct OA link when available
- Concepts
-
Computer science, Data compression, Computer security, Computer visionTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
19Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3134820540 |
|---|---|
| doi | |
| ids.mag | 3134820540 |
| ids.openalex | https://openalex.org/W3134820540 |
| fwci | 0.0 |
| type | article |
| title | SMARTPHONE-BASED COMPRESSION-INDUCED IMAGING SYSTEM DATA SECURITY |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12702 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.6611999869346619 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2808 |
| topics[0].subfield.display_name | Neurology |
| topics[0].display_name | Brain Tumor Detection and Classification |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5002219676971436 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C78548338 |
| concepts[1].level | 2 |
| concepts[1].score | 0.41058826446533203 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2493 |
| concepts[1].display_name | Data compression |
| concepts[2].id | https://openalex.org/C38652104 |
| concepts[2].level | 1 |
| concepts[2].score | 0.4025891423225403 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[2].display_name | Computer security |
| concepts[3].id | https://openalex.org/C31972630 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3192109167575836 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[3].display_name | Computer vision |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.5002219676971436 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/data-compression |
| keywords[1].score | 0.41058826446533203 |
| keywords[1].display_name | Data compression |
| keywords[2].id | https://openalex.org/keywords/computer-security |
| keywords[2].score | 0.4025891423225403 |
| keywords[2].display_name | Computer security |
| keywords[3].id | https://openalex.org/keywords/computer-vision |
| keywords[3].score | 0.3192109167575836 |
| keywords[3].display_name | Computer vision |
| language | en |
| locations[0].id | pmh:oai:scholarshare.temple.edu:20.500.12613/3790 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402624 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | TUScholarShare (Temple University) |
| locations[0].source.host_organization | https://openalex.org/I84392919 |
| locations[0].source.host_organization_name | Temple University |
| locations[0].source.host_organization_lineage | https://openalex.org/I84392919 |
| locations[0].license | |
| locations[0].pdf_url | http://hdl.handle.net/20.500.12613/3790 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | Thesis/Dissertation |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://hdl.handle.net/20.500.12613/3790 |
| locations[1].id | mag:3134820540 |
| locations[1].is_oa | False |
| locations[1].source | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://scholarshare.temple.edu/handle/20.500.12613/3790 |
| authorships[0].author.id | https://openalex.org/A5050038438 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3106-5451 |
| authorships[0].author.display_name | Zicong Wang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zicong Wang |
| authorships[0].is_corresponding | True |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://hdl.handle.net/20.500.12613/3790 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | SMARTPHONE-BASED COMPRESSION-INDUCED IMAGING SYSTEM DATA SECURITY |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T04:12:42.849631 |
| primary_topic.id | https://openalex.org/T12702 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.6611999869346619 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2808 |
| primary_topic.subfield.display_name | Neurology |
| primary_topic.display_name | Brain Tumor Detection and Classification |
| related_works | https://openalex.org/W2188996374, https://openalex.org/W2911707198, https://openalex.org/W2120017694, https://openalex.org/W2140452996, https://openalex.org/W2949364980, https://openalex.org/W2914769327, https://openalex.org/W2923173154, https://openalex.org/W3013645291, https://openalex.org/W2354162628, https://openalex.org/W2765343135, https://openalex.org/W164767390, https://openalex.org/W3155342170, https://openalex.org/W2615001980, https://openalex.org/W2617589261, https://openalex.org/W2466784193, https://openalex.org/W2401594229, https://openalex.org/W2947130470, https://openalex.org/W2950503064, https://openalex.org/W1974882681 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:scholarshare.temple.edu:20.500.12613/3790 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402624 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | TUScholarShare (Temple University) |
| best_oa_location.source.host_organization | https://openalex.org/I84392919 |
| best_oa_location.source.host_organization_name | Temple University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I84392919 |
| best_oa_location.license | |
| best_oa_location.pdf_url | http://hdl.handle.net/20.500.12613/3790 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Thesis/Dissertation |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://hdl.handle.net/20.500.12613/3790 |
| primary_location.id | pmh:oai:scholarshare.temple.edu:20.500.12613/3790 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402624 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | TUScholarShare (Temple University) |
| primary_location.source.host_organization | https://openalex.org/I84392919 |
| primary_location.source.host_organization_name | Temple University |
| primary_location.source.host_organization_lineage | https://openalex.org/I84392919 |
| primary_location.license | |
| primary_location.pdf_url | http://hdl.handle.net/20.500.12613/3790 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | Thesis/Dissertation |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://hdl.handle.net/20.500.12613/3790 |
| publication_date | 2018-01-01 |
| publication_year | 2018 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 13, 16, 125, 197 |
| abstract_inverted_index.In | 112 |
| abstract_inverted_index.V2 | 228 |
| abstract_inverted_index.be | 110 |
| abstract_inverted_index.by | 72 |
| abstract_inverted_index.if | 102 |
| abstract_inverted_index.in | 30, 77, 85, 157, 192, 226, 238 |
| abstract_inverted_index.is | 5, 41, 61, 74, 106, 153, 172, 195, 210, 217, 235 |
| abstract_inverted_index.of | 12, 36, 117, 121 |
| abstract_inverted_index.to | 7, 63, 96, 114, 175, 219 |
| abstract_inverted_index.we | 20, 25, 123 |
| abstract_inverted_index.AES | 55, 73, 135 |
| abstract_inverted_index.The | 0, 33, 128, 187, 230 |
| abstract_inverted_index.V1) | 40 |
| abstract_inverted_index.V2) | 132 |
| abstract_inverted_index.V2. | 240 |
| abstract_inverted_index.all | 50 |
| abstract_inverted_index.and | 24, 81, 94, 98, 146, 167, 181, 223 |
| abstract_inverted_index.are | 183 |
| abstract_inverted_index.for | 83 |
| abstract_inverted_index.key | 46, 143, 165, 170 |
| abstract_inverted_index.new | 126 |
| abstract_inverted_index.the | 9, 37, 44, 65, 68, 78, 86, 103, 118, 134, 138, 154, 159, 179, 211 |
| abstract_inverted_index.Data | 233 |
| abstract_inverted_index.Even | 101 |
| abstract_inverted_index.SCIS | 17, 227, 239 |
| abstract_inverted_index.This | 89, 208 |
| abstract_inverted_index.User | 149 |
| abstract_inverted_index.also | 196 |
| abstract_inverted_index.app, | 19 |
| abstract_inverted_index.data | 27, 52, 66, 71, 105, 136, 161, 180, 188, 222 |
| abstract_inverted_index.from | 53 |
| abstract_inverted_index.keys | 182, 225 |
| abstract_inverted_index.part | 152 |
| abstract_inverted_index.some | 116 |
| abstract_inverted_index.step | 156 |
| abstract_inverted_index.this | 31, 193 |
| abstract_inverted_index.used | 62, 82, 191, 218 |
| abstract_inverted_index.user | 139 |
| abstract_inverted_index.uses | 92 |
| abstract_inverted_index.very | 173 |
| abstract_inverted_index.will | 109 |
| abstract_inverted_index.(SCIS | 39, 131 |
| abstract_inverted_index.Layer | 205 |
| abstract_inverted_index.SCIS, | 122 |
| abstract_inverted_index.Using | 15 |
| abstract_inverted_index.Xcode | 93 |
| abstract_inverted_index.cloud | 79 |
| abstract_inverted_index.data. | 100 |
| abstract_inverted_index.first | 34, 155 |
| abstract_inverted_index.fully | 236 |
| abstract_inverted_index.local | 87 |
| abstract_inverted_index.order | 113 |
| abstract_inverted_index.using | 43 |
| abstract_inverted_index.which | 48, 200, 216 |
| abstract_inverted_index.(SCIS) | 4 |
| abstract_inverted_index.Python | 95 |
| abstract_inverted_index.Secure | 202 |
| abstract_inverted_index.System | 3, 232 |
| abstract_inverted_index.before | 185 |
| abstract_inverted_index.during | 67 |
| abstract_inverted_index.method | 60 |
| abstract_inverted_index.obtain | 8, 21 |
| abstract_inverted_index.second | 129 |
| abstract_inverted_index.secure | 198 |
| abstract_inverted_index.server | 80 |
| abstract_inverted_index.stored | 76 |
| abstract_inverted_index.system | 38, 91, 194 |
| abstract_inverted_index.tumor. | 14 |
| abstract_inverted_index.Sockets | 203 |
| abstract_inverted_index.attacks | 177 |
| abstract_inverted_index.because | 178 |
| abstract_inverted_index.control | 151 |
| abstract_inverted_index.decrypt | 99 |
| abstract_inverted_index.encrypt | 97 |
| abstract_inverted_index.hacked, | 107 |
| abstract_inverted_index.images, | 23 |
| abstract_inverted_index.medical | 51 |
| abstract_inverted_index.prevent | 176 |
| abstract_inverted_index.protect | 64 |
| abstract_inverted_index.server. | 88 |
| abstract_inverted_index.system, | 145 |
| abstract_inverted_index.tactile | 22 |
| abstract_inverted_index.thesis. | 32 |
| abstract_inverted_index.version | 35, 130 |
| abstract_inverted_index.Security | 206, 234 |
| abstract_inverted_index.contents | 108 |
| abstract_inverted_index.control, | 141 |
| abstract_inverted_index.exchange | 144, 171 |
| abstract_inverted_index.features | 120 |
| abstract_inverted_index.hackers. | 54 |
| abstract_inverted_index.includes | 133, 201 |
| abstract_inverted_index.increase | 115 |
| abstract_inverted_index.leakage. | 162 |
| abstract_inverted_index.protects | 49 |
| abstract_inverted_index.protocol | 190, 209 |
| abstract_inverted_index.scrutiny | 119 |
| abstract_inverted_index.securely | 75 |
| abstract_inverted_index.security | 28, 90, 142, 169 |
| abstract_inverted_index.systems. | 229 |
| abstract_inverted_index.version. | 127 |
| abstract_inverted_index.(Advanced | 56 |
| abstract_inverted_index.Combining | 163 |
| abstract_inverted_index.Encrypted | 70 |
| abstract_inverted_index.Standard) | 58 |
| abstract_inverted_index.developed | 6, 26, 42, 124 |
| abstract_inverted_index.effective | 174 |
| abstract_inverted_index.encrypted | 104, 184, 221, 224 |
| abstract_inverted_index.protocol, | 199, 215 |
| abstract_inverted_index.security. | 148 |
| abstract_inverted_index.symmetric | 45, 164 |
| abstract_inverted_index.transport | 220 |
| abstract_inverted_index.(SSL/TLS). | 207 |
| abstract_inverted_index.Encryption | 57 |
| abstract_inverted_index.accidental | 160 |
| abstract_inverted_index.asymmetric | 168, 212 |
| abstract_inverted_index.encryption | 59, 166, 213 |
| abstract_inverted_index.mechanical | 10 |
| abstract_inverted_index.preventing | 158 |
| abstract_inverted_index.processing | 84 |
| abstract_inverted_index.properties | 11 |
| abstract_inverted_index.smartphone | 18 |
| abstract_inverted_index.encryption, | 47, 137 |
| abstract_inverted_index.implemented | 237 |
| abstract_inverted_index.methodology | 29 |
| abstract_inverted_index.unreadable. | 111 |
| abstract_inverted_index.transmission | 189, 214 |
| abstract_inverted_index.communication | 147 |
| abstract_inverted_index.transmission. | 69, 186 |
| abstract_inverted_index.authentication | 140, 150 |
| abstract_inverted_index.Layer/Transport | 204 |
| abstract_inverted_index.Smartphone-based | 1 |
| abstract_inverted_index.Compression-Induced | 2, 231 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5050038438 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.699999988079071 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.30372416 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |