Smartphone-based Iris Recognition through High-Quality Visible Spectrum Iris Capture Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2412.13063
Iris recognition is widely acknowledged for its exceptional accuracy in biometric authentication, traditionally relying on near-infrared (NIR) imaging. Recently, visible spectrum (VIS) imaging via accessible smartphone cameras has been explored for biometric capture. However, a thorough study of iris recognition using smartphone-captured 'High-Quality' VIS images and cross-spectral matching with previously enrolled NIR images has not been conducted. The primary challenge lies in capturing high-quality biometrics, a known limitation of smartphone cameras. This study introduces a novel Android application designed to consistently capture high-quality VIS iris images through automated focus and zoom adjustments. The application integrates a YOLOv3-tiny model for precise eye and iris detection and a lightweight Ghost-Attention U-Net (G-ATTU-Net) for segmentation, while adhering to ISO/IEC 29794-6 standards for image quality. The approach was validated using smartphone-captured VIS and NIR iris images from 47 subjects, achieving a True Acceptance Rate (TAR) of 96.57% for VIS images and 97.95% for NIR images, with consistent performance across various capture distances and iris colors. This robust solution is expected to significantly advance the field of iris biometrics, with important implications for enhancing smartphone security.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2412.13063
- https://arxiv.org/pdf/2412.13063
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405562743
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405562743Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2412.13063Digital Object Identifier
- Title
-
Smartphone-based Iris Recognition through High-Quality Visible Spectrum Iris CaptureWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-12-17Full publication date if available
- Authors
-
Naveenkumar G Venkataswamy, Yu Liu, Surendra Singh, Soumyabrata Dey, Stephanie Schuckers, Masudul H. ImtiazList of authors in order
- Landing page
-
https://arxiv.org/abs/2412.13063Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2412.13063Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2412.13063Direct OA link when available
- Concepts
-
IRIS (biosensor), Iris recognition, Computer science, Artificial intelligence, Computer vision, Quality (philosophy), Spectrum (functional analysis), Biometrics, Pattern recognition (psychology), Physics, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405562743 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2412.13063 |
| ids.doi | https://doi.org/10.48550/arxiv.2412.13063 |
| ids.openalex | https://openalex.org/W4405562743 |
| fwci | |
| type | preprint |
| title | Smartphone-based Iris Recognition through High-Quality Visible Spectrum Iris Capture |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10828 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9872000217437744 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Biometric Identification and Security |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2779503344 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8731950521469116 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5973514 |
| concepts[0].display_name | IRIS (biosensor) |
| concepts[1].id | https://openalex.org/C112356035 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7486244440078735 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1672722 |
| concepts[1].display_name | Iris recognition |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5451416969299316 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5182023644447327 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C31972630 |
| concepts[4].level | 1 |
| concepts[4].score | 0.44893747568130493 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[4].display_name | Computer vision |
| concepts[5].id | https://openalex.org/C2779530757 |
| concepts[5].level | 2 |
| concepts[5].score | 0.44337141513824463 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1207505 |
| concepts[5].display_name | Quality (philosophy) |
| concepts[6].id | https://openalex.org/C156778621 |
| concepts[6].level | 2 |
| concepts[6].score | 0.42664584517478943 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1365748 |
| concepts[6].display_name | Spectrum (functional analysis) |
| concepts[7].id | https://openalex.org/C184297639 |
| concepts[7].level | 2 |
| concepts[7].score | 0.3551631271839142 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q177765 |
| concepts[7].display_name | Biometrics |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.3233402967453003 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C121332964 |
| concepts[9].level | 0 |
| concepts[9].score | 0.09930327534675598 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[9].display_name | Physics |
| concepts[10].id | https://openalex.org/C62520636 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[10].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/iris |
| keywords[0].score | 0.8731950521469116 |
| keywords[0].display_name | IRIS (biosensor) |
| keywords[1].id | https://openalex.org/keywords/iris-recognition |
| keywords[1].score | 0.7486244440078735 |
| keywords[1].display_name | Iris recognition |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5451416969299316 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5182023644447327 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/computer-vision |
| keywords[4].score | 0.44893747568130493 |
| keywords[4].display_name | Computer vision |
| keywords[5].id | https://openalex.org/keywords/quality |
| keywords[5].score | 0.44337141513824463 |
| keywords[5].display_name | Quality (philosophy) |
| keywords[6].id | https://openalex.org/keywords/spectrum |
| keywords[6].score | 0.42664584517478943 |
| keywords[6].display_name | Spectrum (functional analysis) |
| keywords[7].id | https://openalex.org/keywords/biometrics |
| keywords[7].score | 0.3551631271839142 |
| keywords[7].display_name | Biometrics |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.3233402967453003 |
| keywords[8].display_name | Pattern recognition (psychology) |
| keywords[9].id | https://openalex.org/keywords/physics |
| keywords[9].score | 0.09930327534675598 |
| keywords[9].display_name | Physics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2412.13063 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2412.13063 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2412.13063 |
| locations[1].id | doi:10.48550/arxiv.2412.13063 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2412.13063 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5092266721 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Naveenkumar G Venkataswamy |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Venkataswamy, Naveenkumar G |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5092266741 |
| authorships[1].author.orcid | https://orcid.org/0009-0003-3540-6377 |
| authorships[1].author.display_name | Yu Liu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Liu, Yu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5102977664 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0760-5649 |
| authorships[2].author.display_name | Surendra Singh |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Singh, Surendra |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5025637181 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4589-5165 |
| authorships[3].author.display_name | Soumyabrata Dey |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Dey, Soumyabrata |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5032143229 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9365-9642 |
| authorships[4].author.display_name | Stephanie Schuckers |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Schuckers, Stephanie |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5037790753 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-5528-482X |
| authorships[5].author.display_name | Masudul H. Imtiaz |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Imtiaz, Masudul H |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2412.13063 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-12-19T00:00:00 |
| display_name | Smartphone-based Iris Recognition through High-Quality Visible Spectrum Iris Capture |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10828 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9872000217437744 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Biometric Identification and Security |
| related_works | https://openalex.org/W2162640687, https://openalex.org/W2018223046, https://openalex.org/W2759939383, https://openalex.org/W2294693339, https://openalex.org/W2952386695, https://openalex.org/W2355560018, https://openalex.org/W2147209541, https://openalex.org/W4231710054, https://openalex.org/W2557390811, https://openalex.org/W3133795085 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2412.13063 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2412.13063 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2412.13063 |
| primary_location.id | pmh:oai:arXiv.org:2412.13063 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2412.13063 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2412.13063 |
| publication_date | 2024-12-17 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 34, 65, 74, 95, 105, 136 |
| abstract_inverted_index.47 | 133 |
| abstract_inverted_index.in | 9, 61 |
| abstract_inverted_index.is | 2, 164 |
| abstract_inverted_index.of | 37, 68, 141, 171 |
| abstract_inverted_index.on | 14 |
| abstract_inverted_index.to | 79, 114, 166 |
| abstract_inverted_index.NIR | 51, 129, 149 |
| abstract_inverted_index.The | 57, 92, 121 |
| abstract_inverted_index.VIS | 43, 83, 127, 144 |
| abstract_inverted_index.and | 45, 89, 101, 104, 128, 146, 158 |
| abstract_inverted_index.eye | 100 |
| abstract_inverted_index.for | 5, 30, 98, 110, 118, 143, 148, 177 |
| abstract_inverted_index.has | 27, 53 |
| abstract_inverted_index.its | 6 |
| abstract_inverted_index.not | 54 |
| abstract_inverted_index.the | 169 |
| abstract_inverted_index.via | 23 |
| abstract_inverted_index.was | 123 |
| abstract_inverted_index.Iris | 0 |
| abstract_inverted_index.Rate | 139 |
| abstract_inverted_index.This | 71, 161 |
| abstract_inverted_index.True | 137 |
| abstract_inverted_index.been | 28, 55 |
| abstract_inverted_index.from | 132 |
| abstract_inverted_index.iris | 38, 84, 102, 130, 159, 172 |
| abstract_inverted_index.lies | 60 |
| abstract_inverted_index.with | 48, 151, 174 |
| abstract_inverted_index.zoom | 90 |
| abstract_inverted_index.(NIR) | 16 |
| abstract_inverted_index.(TAR) | 140 |
| abstract_inverted_index.(VIS) | 21 |
| abstract_inverted_index.U-Net | 108 |
| abstract_inverted_index.field | 170 |
| abstract_inverted_index.focus | 88 |
| abstract_inverted_index.image | 119 |
| abstract_inverted_index.known | 66 |
| abstract_inverted_index.model | 97 |
| abstract_inverted_index.novel | 75 |
| abstract_inverted_index.study | 36, 72 |
| abstract_inverted_index.using | 40, 125 |
| abstract_inverted_index.while | 112 |
| abstract_inverted_index.96.57% | 142 |
| abstract_inverted_index.97.95% | 147 |
| abstract_inverted_index.across | 154 |
| abstract_inverted_index.images | 44, 52, 85, 131, 145 |
| abstract_inverted_index.robust | 162 |
| abstract_inverted_index.widely | 3 |
| abstract_inverted_index.29794-6 | 116 |
| abstract_inverted_index.Android | 76 |
| abstract_inverted_index.ISO/IEC | 115 |
| abstract_inverted_index.advance | 168 |
| abstract_inverted_index.cameras | 26 |
| abstract_inverted_index.capture | 81, 156 |
| abstract_inverted_index.colors. | 160 |
| abstract_inverted_index.images, | 150 |
| abstract_inverted_index.imaging | 22 |
| abstract_inverted_index.precise | 99 |
| abstract_inverted_index.primary | 58 |
| abstract_inverted_index.relying | 13 |
| abstract_inverted_index.through | 86 |
| abstract_inverted_index.various | 155 |
| abstract_inverted_index.visible | 19 |
| abstract_inverted_index.However, | 33 |
| abstract_inverted_index.accuracy | 8 |
| abstract_inverted_index.adhering | 113 |
| abstract_inverted_index.approach | 122 |
| abstract_inverted_index.cameras. | 70 |
| abstract_inverted_index.capture. | 32 |
| abstract_inverted_index.designed | 78 |
| abstract_inverted_index.enrolled | 50 |
| abstract_inverted_index.expected | 165 |
| abstract_inverted_index.explored | 29 |
| abstract_inverted_index.imaging. | 17 |
| abstract_inverted_index.matching | 47 |
| abstract_inverted_index.quality. | 120 |
| abstract_inverted_index.solution | 163 |
| abstract_inverted_index.spectrum | 20 |
| abstract_inverted_index.thorough | 35 |
| abstract_inverted_index.Recently, | 18 |
| abstract_inverted_index.achieving | 135 |
| abstract_inverted_index.automated | 87 |
| abstract_inverted_index.biometric | 10, 31 |
| abstract_inverted_index.capturing | 62 |
| abstract_inverted_index.challenge | 59 |
| abstract_inverted_index.detection | 103 |
| abstract_inverted_index.distances | 157 |
| abstract_inverted_index.enhancing | 178 |
| abstract_inverted_index.important | 175 |
| abstract_inverted_index.security. | 180 |
| abstract_inverted_index.standards | 117 |
| abstract_inverted_index.subjects, | 134 |
| abstract_inverted_index.validated | 124 |
| abstract_inverted_index.Acceptance | 138 |
| abstract_inverted_index.accessible | 24 |
| abstract_inverted_index.conducted. | 56 |
| abstract_inverted_index.consistent | 152 |
| abstract_inverted_index.integrates | 94 |
| abstract_inverted_index.introduces | 73 |
| abstract_inverted_index.limitation | 67 |
| abstract_inverted_index.previously | 49 |
| abstract_inverted_index.smartphone | 25, 69, 179 |
| abstract_inverted_index.YOLOv3-tiny | 96 |
| abstract_inverted_index.application | 77, 93 |
| abstract_inverted_index.biometrics, | 64, 173 |
| abstract_inverted_index.exceptional | 7 |
| abstract_inverted_index.lightweight | 106 |
| abstract_inverted_index.performance | 153 |
| abstract_inverted_index.recognition | 1, 39 |
| abstract_inverted_index.(G-ATTU-Net) | 109 |
| abstract_inverted_index.acknowledged | 4 |
| abstract_inverted_index.adjustments. | 91 |
| abstract_inverted_index.consistently | 80 |
| abstract_inverted_index.high-quality | 63, 82 |
| abstract_inverted_index.implications | 176 |
| abstract_inverted_index.near-infrared | 15 |
| abstract_inverted_index.segmentation, | 111 |
| abstract_inverted_index.significantly | 167 |
| abstract_inverted_index.traditionally | 12 |
| abstract_inverted_index.'High-Quality' | 42 |
| abstract_inverted_index.cross-spectral | 46 |
| abstract_inverted_index.Ghost-Attention | 107 |
| abstract_inverted_index.authentication, | 11 |
| abstract_inverted_index.smartphone-captured | 41, 126 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |