Smooth ROC curve estimation via Bernstein polynomials Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1371/journal.pone.0251959
The receiver operating characteristic (ROC) curve is commonly used to evaluate the accuracy of a diagnostic test for classifying observations into two groups. We propose two novel tuning parameters for estimating the ROC curve via Bernstein polynomial smoothing of the empirical ROC curve. The new estimator is very easy to implement with the naturally selected tuning parameter, as illustrated by analyzing both real and simulated data sets. Empirical performance is investigated through extensive simulation studies with a variety of scenarios where the two groups are both from a single family of distributions (symmetric or right skewed) or one from a symmetric and the other from a right skewed distribution. The new estimator is uniformly more efficient than the empirical ROC estimator, and very competitive to eleven other existing smooth ROC estimators in terms of mean integrated square errors.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1371/journal.pone.0251959
- https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0251959&type=printable
- OA Status
- gold
- Cited By
- 5
- References
- 24
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3164557123
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3164557123Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1371/journal.pone.0251959Digital Object Identifier
- Title
-
Smooth ROC curve estimation via Bernstein polynomialsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-05-25Full publication date if available
- Authors
-
Dongliang Wang, Xueya CaiList of authors in order
- Landing page
-
https://doi.org/10.1371/journal.pone.0251959Publisher landing page
- PDF URL
-
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0251959&type=printableDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0251959&type=printableDirect OA link when available
- Concepts
-
Estimator, Receiver operating characteristic, Smoothing, Mathematics, Statistics, Polynomial, Empirical distribution function, Applied mathematics, Computer science, Algorithm, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 1, 2023: 1, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
24Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3164557123 |
|---|---|
| doi | https://doi.org/10.1371/journal.pone.0251959 |
| ids.doi | https://doi.org/10.1371/journal.pone.0251959 |
| ids.mag | 3164557123 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/34032801 |
| ids.openalex | https://openalex.org/W3164557123 |
| fwci | 0.42331073 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D000465 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Algorithms |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D019540 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Area Under Curve |
| mesh[2].qualifier_ui | Q000706 |
| mesh[2].descriptor_ui | D003198 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | statistics & numerical data |
| mesh[2].descriptor_name | Computer Simulation |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D003627 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Data Interpretation, Statistical |
| mesh[4].qualifier_ui | Q000706 |
| mesh[4].descriptor_ui | D003955 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | statistics & numerical data |
| mesh[4].descriptor_name | Diagnostic Tests, Routine |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D006801 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Humans |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D015233 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Models, Statistical |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D012372 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | ROC Curve |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D018709 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Statistics, Nonparametric |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D000465 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Algorithms |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D019540 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Area Under Curve |
| mesh[11].qualifier_ui | Q000706 |
| mesh[11].descriptor_ui | D003198 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | statistics & numerical data |
| mesh[11].descriptor_name | Computer Simulation |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D003627 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Data Interpretation, Statistical |
| mesh[13].qualifier_ui | Q000706 |
| mesh[13].descriptor_ui | D003955 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | statistics & numerical data |
| mesh[13].descriptor_name | Diagnostic Tests, Routine |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D006801 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Humans |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D015233 |
| mesh[15].is_major_topic | True |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Models, Statistical |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D012372 |
| mesh[16].is_major_topic | True |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | ROC Curve |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D018709 |
| mesh[17].is_major_topic | True |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Statistics, Nonparametric |
| type | article |
| title | Smooth ROC curve estimation via Bernstein polynomials |
| biblio.issue | 5 |
| biblio.volume | 16 |
| biblio.last_page | e0251959 |
| biblio.first_page | e0251959 |
| topics[0].id | https://openalex.org/T11652 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9879000186920166 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Imbalanced Data Classification Techniques |
| topics[1].id | https://openalex.org/T14400 |
| topics[1].field.id | https://openalex.org/fields/36 |
| topics[1].field.display_name | Health Professions |
| topics[1].score | 0.9545000195503235 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3605 |
| topics[1].subfield.display_name | Health Information Management |
| topics[1].display_name | Medical Coding and Health Information |
| topics[2].id | https://openalex.org/T10968 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9334999918937683 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2613 |
| topics[2].subfield.display_name | Statistics and Probability |
| topics[2].display_name | Statistical Distribution Estimation and Applications |
| is_xpac | False |
| apc_list.value | 1805 |
| apc_list.currency | USD |
| apc_list.value_usd | 1805 |
| apc_paid.value | 1805 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1805 |
| concepts[0].id | https://openalex.org/C185429906 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8741886615753174 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1130160 |
| concepts[0].display_name | Estimator |
| concepts[1].id | https://openalex.org/C58471807 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8459646701812744 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q327120 |
| concepts[1].display_name | Receiver operating characteristic |
| concepts[2].id | https://openalex.org/C3770464 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6228649020195007 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q775963 |
| concepts[2].display_name | Smoothing |
| concepts[3].id | https://openalex.org/C33923547 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5913612246513367 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[3].display_name | Mathematics |
| concepts[4].id | https://openalex.org/C105795698 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5026028156280518 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[4].display_name | Statistics |
| concepts[5].id | https://openalex.org/C90119067 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4843243360519409 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q43260 |
| concepts[5].display_name | Polynomial |
| concepts[6].id | https://openalex.org/C98385598 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4505619406700134 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1339385 |
| concepts[6].display_name | Empirical distribution function |
| concepts[7].id | https://openalex.org/C28826006 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4217085838317871 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[7].display_name | Applied mathematics |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.35413962602615356 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C11413529 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3350611925125122 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[9].display_name | Algorithm |
| concepts[10].id | https://openalex.org/C134306372 |
| concepts[10].level | 1 |
| concepts[10].score | 0.13059774041175842 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[10].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/estimator |
| keywords[0].score | 0.8741886615753174 |
| keywords[0].display_name | Estimator |
| keywords[1].id | https://openalex.org/keywords/receiver-operating-characteristic |
| keywords[1].score | 0.8459646701812744 |
| keywords[1].display_name | Receiver operating characteristic |
| keywords[2].id | https://openalex.org/keywords/smoothing |
| keywords[2].score | 0.6228649020195007 |
| keywords[2].display_name | Smoothing |
| keywords[3].id | https://openalex.org/keywords/mathematics |
| keywords[3].score | 0.5913612246513367 |
| keywords[3].display_name | Mathematics |
| keywords[4].id | https://openalex.org/keywords/statistics |
| keywords[4].score | 0.5026028156280518 |
| keywords[4].display_name | Statistics |
| keywords[5].id | https://openalex.org/keywords/polynomial |
| keywords[5].score | 0.4843243360519409 |
| keywords[5].display_name | Polynomial |
| keywords[6].id | https://openalex.org/keywords/empirical-distribution-function |
| keywords[6].score | 0.4505619406700134 |
| keywords[6].display_name | Empirical distribution function |
| keywords[7].id | https://openalex.org/keywords/applied-mathematics |
| keywords[7].score | 0.4217085838317871 |
| keywords[7].display_name | Applied mathematics |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.35413962602615356 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/algorithm |
| keywords[9].score | 0.3350611925125122 |
| keywords[9].display_name | Algorithm |
| keywords[10].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[10].score | 0.13059774041175842 |
| keywords[10].display_name | Mathematical analysis |
| language | en |
| locations[0].id | doi:10.1371/journal.pone.0251959 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S202381698 |
| locations[0].source.issn | 1932-6203 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1932-6203 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | PLoS ONE |
| locations[0].source.host_organization | https://openalex.org/P4310315706 |
| locations[0].source.host_organization_name | Public Library of Science |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315706 |
| locations[0].source.host_organization_lineage_names | Public Library of Science |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0251959&type=printable |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | PLOS ONE |
| locations[0].landing_page_url | https://doi.org/10.1371/journal.pone.0251959 |
| locations[1].id | pmid:34032801 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | PloS one |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/34032801 |
| locations[2].id | pmh:oai:doaj.org/article:01873894137a4398a42421141ff3c063 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | PLoS ONE, Vol 16, Iss 5, p e0251959 (2021) |
| locations[2].landing_page_url | https://doaj.org/article/01873894137a4398a42421141ff3c063 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:8148335 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | PLoS One |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/8148335 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5100689761 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4713-3516 |
| authorships[0].author.display_name | Dongliang Wang |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I20388574 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Public Health and Preventive Medicine, State University of New York Upstate Medical University, Syracuse, New York, United States of America |
| authorships[0].institutions[0].id | https://openalex.org/I20388574 |
| authorships[0].institutions[0].ror | https://ror.org/040kfrw16 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I20388574 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | SUNY Upstate Medical University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Dongliang Wang |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Public Health and Preventive Medicine, State University of New York Upstate Medical University, Syracuse, New York, United States of America |
| authorships[1].author.id | https://openalex.org/A5055216775 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7922-2703 |
| authorships[1].author.display_name | Xueya Cai |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I5388228 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York, United States of America |
| authorships[1].institutions[0].id | https://openalex.org/I5388228 |
| authorships[1].institutions[0].ror | https://ror.org/022kthw22 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I5388228 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Rochester |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Xueya Cai |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York, United States of America |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0251959&type=printable |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Smooth ROC curve estimation via Bernstein polynomials |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11652 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9879000186920166 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Imbalanced Data Classification Techniques |
| related_works | https://openalex.org/W2383807498, https://openalex.org/W1978572805, https://openalex.org/W1997992934, https://openalex.org/W1987225439, https://openalex.org/W4385649027, https://openalex.org/W4238188170, https://openalex.org/W2125114371, https://openalex.org/W1983319886, https://openalex.org/W3150274214, https://openalex.org/W3123431136 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1371/journal.pone.0251959 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S202381698 |
| best_oa_location.source.issn | 1932-6203 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1932-6203 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | PLoS ONE |
| best_oa_location.source.host_organization | https://openalex.org/P4310315706 |
| best_oa_location.source.host_organization_name | Public Library of Science |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315706 |
| best_oa_location.source.host_organization_lineage_names | Public Library of Science |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0251959&type=printable |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | PLOS ONE |
| best_oa_location.landing_page_url | https://doi.org/10.1371/journal.pone.0251959 |
| primary_location.id | doi:10.1371/journal.pone.0251959 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S202381698 |
| primary_location.source.issn | 1932-6203 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1932-6203 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | PLoS ONE |
| primary_location.source.host_organization | https://openalex.org/P4310315706 |
| primary_location.source.host_organization_name | Public Library of Science |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315706 |
| primary_location.source.host_organization_lineage_names | Public Library of Science |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0251959&type=printable |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | PLOS ONE |
| primary_location.landing_page_url | https://doi.org/10.1371/journal.pone.0251959 |
| publication_date | 2021-05-25 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2042946827, https://openalex.org/W2159580078, https://openalex.org/W2001088761, https://openalex.org/W1489950266, https://openalex.org/W2119655341, https://openalex.org/W2002973944, https://openalex.org/W2099565638, https://openalex.org/W2109859004, https://openalex.org/W2078121434, https://openalex.org/W1970375475, https://openalex.org/W1982989940, https://openalex.org/W2048423402, https://openalex.org/W2119355718, https://openalex.org/W2085848287, https://openalex.org/W2212505474, https://openalex.org/W2945748209, https://openalex.org/W2149205892, https://openalex.org/W2312242748, https://openalex.org/W1981579074, https://openalex.org/W2119029887, https://openalex.org/W1509445416, https://openalex.org/W4232875550, https://openalex.org/W2963199489, https://openalex.org/W1539462193 |
| referenced_works_count | 24 |
| abstract_inverted_index.a | 14, 76, 87, 99, 105 |
| abstract_inverted_index.We | 23 |
| abstract_inverted_index.as | 57 |
| abstract_inverted_index.by | 59 |
| abstract_inverted_index.in | 131 |
| abstract_inverted_index.is | 6, 46, 69, 112 |
| abstract_inverted_index.of | 13, 38, 78, 90, 133 |
| abstract_inverted_index.or | 93, 96 |
| abstract_inverted_index.to | 9, 49, 124 |
| abstract_inverted_index.ROC | 32, 41, 119, 129 |
| abstract_inverted_index.The | 0, 43, 109 |
| abstract_inverted_index.and | 63, 101, 121 |
| abstract_inverted_index.are | 84 |
| abstract_inverted_index.for | 17, 29 |
| abstract_inverted_index.new | 44, 110 |
| abstract_inverted_index.one | 97 |
| abstract_inverted_index.the | 11, 31, 39, 52, 81, 102, 117 |
| abstract_inverted_index.two | 21, 25, 82 |
| abstract_inverted_index.via | 34 |
| abstract_inverted_index.both | 61, 85 |
| abstract_inverted_index.data | 65 |
| abstract_inverted_index.easy | 48 |
| abstract_inverted_index.from | 86, 98, 104 |
| abstract_inverted_index.into | 20 |
| abstract_inverted_index.mean | 134 |
| abstract_inverted_index.more | 114 |
| abstract_inverted_index.real | 62 |
| abstract_inverted_index.test | 16 |
| abstract_inverted_index.than | 116 |
| abstract_inverted_index.used | 8 |
| abstract_inverted_index.very | 47, 122 |
| abstract_inverted_index.with | 51, 75 |
| abstract_inverted_index.(ROC) | 4 |
| abstract_inverted_index.curve | 5, 33 |
| abstract_inverted_index.novel | 26 |
| abstract_inverted_index.other | 103, 126 |
| abstract_inverted_index.right | 94, 106 |
| abstract_inverted_index.sets. | 66 |
| abstract_inverted_index.terms | 132 |
| abstract_inverted_index.where | 80 |
| abstract_inverted_index.curve. | 42 |
| abstract_inverted_index.eleven | 125 |
| abstract_inverted_index.family | 89 |
| abstract_inverted_index.groups | 83 |
| abstract_inverted_index.single | 88 |
| abstract_inverted_index.skewed | 107 |
| abstract_inverted_index.smooth | 128 |
| abstract_inverted_index.square | 136 |
| abstract_inverted_index.tuning | 27, 55 |
| abstract_inverted_index.errors. | 137 |
| abstract_inverted_index.groups. | 22 |
| abstract_inverted_index.propose | 24 |
| abstract_inverted_index.skewed) | 95 |
| abstract_inverted_index.studies | 74 |
| abstract_inverted_index.through | 71 |
| abstract_inverted_index.variety | 77 |
| abstract_inverted_index.accuracy | 12 |
| abstract_inverted_index.commonly | 7 |
| abstract_inverted_index.evaluate | 10 |
| abstract_inverted_index.existing | 127 |
| abstract_inverted_index.receiver | 1 |
| abstract_inverted_index.selected | 54 |
| abstract_inverted_index.Bernstein | 35 |
| abstract_inverted_index.Empirical | 67 |
| abstract_inverted_index.analyzing | 60 |
| abstract_inverted_index.efficient | 115 |
| abstract_inverted_index.empirical | 40, 118 |
| abstract_inverted_index.estimator | 45, 111 |
| abstract_inverted_index.extensive | 72 |
| abstract_inverted_index.implement | 50 |
| abstract_inverted_index.naturally | 53 |
| abstract_inverted_index.operating | 2 |
| abstract_inverted_index.scenarios | 79 |
| abstract_inverted_index.simulated | 64 |
| abstract_inverted_index.smoothing | 37 |
| abstract_inverted_index.symmetric | 100 |
| abstract_inverted_index.uniformly | 113 |
| abstract_inverted_index.(symmetric | 92 |
| abstract_inverted_index.diagnostic | 15 |
| abstract_inverted_index.estimating | 30 |
| abstract_inverted_index.estimator, | 120 |
| abstract_inverted_index.estimators | 130 |
| abstract_inverted_index.integrated | 135 |
| abstract_inverted_index.parameter, | 56 |
| abstract_inverted_index.parameters | 28 |
| abstract_inverted_index.polynomial | 36 |
| abstract_inverted_index.simulation | 73 |
| abstract_inverted_index.classifying | 18 |
| abstract_inverted_index.competitive | 123 |
| abstract_inverted_index.illustrated | 58 |
| abstract_inverted_index.performance | 68 |
| abstract_inverted_index.investigated | 70 |
| abstract_inverted_index.observations | 19 |
| abstract_inverted_index.distribution. | 108 |
| abstract_inverted_index.distributions | 91 |
| abstract_inverted_index.characteristic | 3 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5100689761, https://openalex.org/A5055216775 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I20388574, https://openalex.org/I5388228 |
| citation_normalized_percentile.value | 0.68478091 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |