SNMatch: An Unsupervised Method for Column Semantic-Type Detection Based on Siamese Network Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/math13040607
Column semantic-type detection is a crucial task for data integration and schema matching, particularly when dealing with large volumes of unlabeled tabular data. Existing methods often rely on supervised learning models, which require extensive labeled data. In this paper, we propose SNMatch, an unsupervised approach based on a Siamese network for detecting column semantic types without labeled training data. The novelty of SNMatch lies in its ability to generate the semantic embeddings of columns by considering both format and semantic features and clustering them into semantic types. Unlike traditional methods, which typically rely on keyword matching or supervised classification, SNMatch leverages unsupervised learning to tackle the challenges of column semantic detection in massive datasets with limited labeled examples. We demonstrate that SNMatch significantly outperforms current state-of-the-art techniques in terms of clustering accuracy, especially in handling complex and nested semantic types. Extensive experiments on the MACST and VizNet-Manyeyes datasets validate its effectiveness, achieving superior performance in column semantic-type detection compared to methods such as TF-IDF, FastText, and BERT. The proposed method shows great promise for practical applications in data integration, data cleaning, and automated schema mapping, particularly in scenarios where labeled data are scarce or unavailable. Furthermore, our work builds upon recent advances in neural network-based embeddings and unsupervised learning, contributing to the growing body of research in automatic schema matching and tabular data understanding.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/math13040607
- OA Status
- gold
- Cited By
- 1
- References
- 27
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407427461
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407427461Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/math13040607Digital Object Identifier
- Title
-
SNMatch: An Unsupervised Method for Column Semantic-Type Detection Based on Siamese NetworkWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-13Full publication date if available
- Authors
-
Tiezheng Nie, Hanyu Mao, A. Liu, Xuliang Wang, Derong Shen, Yue KouList of authors in order
- Landing page
-
https://doi.org/10.3390/math13040607Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3390/math13040607Direct OA link when available
- Concepts
-
Column (typography), Computer science, Artificial intelligence, Natural language processing, Pattern recognition (psychology), Computer network, Frame (networking)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
27Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407427461 |
|---|---|
| doi | https://doi.org/10.3390/math13040607 |
| ids.doi | https://doi.org/10.3390/math13040607 |
| ids.openalex | https://openalex.org/W4407427461 |
| fwci | 4.81974515 |
| type | article |
| title | SNMatch: An Unsupervised Method for Column Semantic-Type Detection Based on Siamese Network |
| awards[0].id | https://openalex.org/G5505926156 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 62072084 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 4 |
| biblio.volume | 13 |
| biblio.last_page | 607 |
| biblio.first_page | 607 |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T10181 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9984999895095825 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Natural Language Processing Techniques |
| topics[2].id | https://openalex.org/T11550 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9941999912261963 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Text and Document Classification Technologies |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 1800 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1949 |
| apc_paid.value | 1800 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1949 |
| concepts[0].id | https://openalex.org/C2780551164 |
| concepts[0].level | 3 |
| concepts[0].score | 0.732071042060852 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2306599 |
| concepts[0].display_name | Column (typography) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5292593240737915 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.47397154569625854 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C204321447 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3645711839199066 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[3].display_name | Natural language processing |
| concepts[4].id | https://openalex.org/C153180895 |
| concepts[4].level | 2 |
| concepts[4].score | 0.3459114134311676 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[4].display_name | Pattern recognition (psychology) |
| concepts[5].id | https://openalex.org/C31258907 |
| concepts[5].level | 1 |
| concepts[5].score | 0.0828126072883606 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[5].display_name | Computer network |
| concepts[6].id | https://openalex.org/C126042441 |
| concepts[6].level | 2 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1324888 |
| concepts[6].display_name | Frame (networking) |
| keywords[0].id | https://openalex.org/keywords/column |
| keywords[0].score | 0.732071042060852 |
| keywords[0].display_name | Column (typography) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5292593240737915 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.47397154569625854 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/natural-language-processing |
| keywords[3].score | 0.3645711839199066 |
| keywords[3].display_name | Natural language processing |
| keywords[4].id | https://openalex.org/keywords/pattern-recognition |
| keywords[4].score | 0.3459114134311676 |
| keywords[4].display_name | Pattern recognition (psychology) |
| keywords[5].id | https://openalex.org/keywords/computer-network |
| keywords[5].score | 0.0828126072883606 |
| keywords[5].display_name | Computer network |
| language | en |
| locations[0].id | doi:10.3390/math13040607 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210192031 |
| locations[0].source.issn | 2227-7390 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2227-7390 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Mathematics |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Mathematics |
| locations[0].landing_page_url | https://doi.org/10.3390/math13040607 |
| locations[1].id | pmh:oai:doaj.org/article:cc9544814d94419d825ae5516bb00c53 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Mathematics, Vol 13, Iss 4, p 607 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/cc9544814d94419d825ae5516bb00c53 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5102979521 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0166-1324 |
| authorships[0].author.display_name | Tiezheng Nie |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I9224756 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, Northeastern University, Shenyang 110169, China |
| authorships[0].institutions[0].id | https://openalex.org/I9224756 |
| authorships[0].institutions[0].ror | https://ror.org/03awzbc87 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I9224756 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Northeastern University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Tiezheng Nie |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Computer Science and Engineering, Northeastern University, Shenyang 110169, China |
| authorships[1].author.id | https://openalex.org/A5040040232 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8639-2257 |
| authorships[1].author.display_name | Hanyu Mao |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I9224756 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, Northeastern University, Shenyang 110169, China |
| authorships[1].institutions[0].id | https://openalex.org/I9224756 |
| authorships[1].institutions[0].ror | https://ror.org/03awzbc87 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I9224756 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Northeastern University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hanyu Mao |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Computer Science and Engineering, Northeastern University, Shenyang 110169, China |
| authorships[2].author.id | https://openalex.org/A5108938098 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | A. Liu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I9224756 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, Northeastern University, Shenyang 110169, China |
| authorships[2].institutions[0].id | https://openalex.org/I9224756 |
| authorships[2].institutions[0].ror | https://ror.org/03awzbc87 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I9224756 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Northeastern University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Aolin Liu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Computer Science and Engineering, Northeastern University, Shenyang 110169, China |
| authorships[3].author.id | https://openalex.org/A5107957551 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9043-1407 |
| authorships[3].author.display_name | Xuliang Wang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I9224756 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, Northeastern University, Shenyang 110169, China |
| authorships[3].institutions[0].id | https://openalex.org/I9224756 |
| authorships[3].institutions[0].ror | https://ror.org/03awzbc87 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I9224756 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Northeastern University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xuliang Wang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Computer Science and Engineering, Northeastern University, Shenyang 110169, China |
| authorships[4].author.id | https://openalex.org/A5015251362 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0310-6372 |
| authorships[4].author.display_name | Derong Shen |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I9224756 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, Northeastern University, Shenyang 110169, China |
| authorships[4].institutions[0].id | https://openalex.org/I9224756 |
| authorships[4].institutions[0].ror | https://ror.org/03awzbc87 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I9224756 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Northeastern University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Derong Shen |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Computer Science and Engineering, Northeastern University, Shenyang 110169, China |
| authorships[5].author.id | https://openalex.org/A5026995541 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-5307-4893 |
| authorships[5].author.display_name | Yue Kou |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I9224756 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, Northeastern University, Shenyang 110169, China |
| authorships[5].institutions[0].id | https://openalex.org/I9224756 |
| authorships[5].institutions[0].ror | https://ror.org/03awzbc87 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I9224756 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Northeastern University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Yue Kou |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Computer Science and Engineering, Northeastern University, Shenyang 110169, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3390/math13040607 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | SNMatch: An Unsupervised Method for Column Semantic-Type Detection Based on Siamese Network |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2033914206, https://openalex.org/W2042327336, https://openalex.org/W3204019825 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/math13040607 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210192031 |
| best_oa_location.source.issn | 2227-7390 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2227-7390 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Mathematics |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Mathematics |
| best_oa_location.landing_page_url | https://doi.org/10.3390/math13040607 |
| primary_location.id | doi:10.3390/math13040607 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210192031 |
| primary_location.source.issn | 2227-7390 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2227-7390 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Mathematics |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Mathematics |
| primary_location.landing_page_url | https://doi.org/10.3390/math13040607 |
| publication_date | 2025-02-13 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W46384362, https://openalex.org/W4386591587, https://openalex.org/W2960180535, https://openalex.org/W2111869785, https://openalex.org/W2398606196, https://openalex.org/W6755848239, https://openalex.org/W2951621897, https://openalex.org/W3082424964, https://openalex.org/W2808636123, https://openalex.org/W3129639992, https://openalex.org/W6679208599, https://openalex.org/W2493916176, https://openalex.org/W2593576259, https://openalex.org/W2092364718, https://openalex.org/W2154658848, https://openalex.org/W4221163895, https://openalex.org/W2924309908, https://openalex.org/W2971681342, https://openalex.org/W3145728363, https://openalex.org/W4366659937, https://openalex.org/W4281826654, https://openalex.org/W2941366772, https://openalex.org/W2341748398, https://openalex.org/W3155299751, https://openalex.org/W3103177583, https://openalex.org/W2898796029, https://openalex.org/W2127589108 |
| referenced_works_count | 27 |
| abstract_inverted_index.a | 4, 47 |
| abstract_inverted_index.In | 36 |
| abstract_inverted_index.We | 118 |
| abstract_inverted_index.an | 42 |
| abstract_inverted_index.as | 162 |
| abstract_inverted_index.by | 74 |
| abstract_inverted_index.in | 64, 111, 127, 133, 154, 176, 186, 202, 216 |
| abstract_inverted_index.is | 3 |
| abstract_inverted_index.of | 19, 61, 72, 107, 129, 214 |
| abstract_inverted_index.on | 27, 46, 93, 142 |
| abstract_inverted_index.or | 96, 193 |
| abstract_inverted_index.to | 67, 103, 159, 210 |
| abstract_inverted_index.we | 39 |
| abstract_inverted_index.The | 59, 167 |
| abstract_inverted_index.and | 10, 78, 81, 136, 145, 165, 181, 206, 220 |
| abstract_inverted_index.are | 191 |
| abstract_inverted_index.for | 7, 50, 173 |
| abstract_inverted_index.its | 65, 149 |
| abstract_inverted_index.our | 196 |
| abstract_inverted_index.the | 69, 105, 143, 211 |
| abstract_inverted_index.body | 213 |
| abstract_inverted_index.both | 76 |
| abstract_inverted_index.data | 8, 177, 179, 190, 222 |
| abstract_inverted_index.into | 84 |
| abstract_inverted_index.lies | 63 |
| abstract_inverted_index.rely | 26, 92 |
| abstract_inverted_index.such | 161 |
| abstract_inverted_index.task | 6 |
| abstract_inverted_index.that | 120 |
| abstract_inverted_index.them | 83 |
| abstract_inverted_index.this | 37 |
| abstract_inverted_index.upon | 199 |
| abstract_inverted_index.when | 14 |
| abstract_inverted_index.with | 16, 114 |
| abstract_inverted_index.work | 197 |
| abstract_inverted_index.BERT. | 166 |
| abstract_inverted_index.MACST | 144 |
| abstract_inverted_index.based | 45 |
| abstract_inverted_index.data. | 22, 35, 58 |
| abstract_inverted_index.great | 171 |
| abstract_inverted_index.large | 17 |
| abstract_inverted_index.often | 25 |
| abstract_inverted_index.shows | 170 |
| abstract_inverted_index.terms | 128 |
| abstract_inverted_index.types | 54 |
| abstract_inverted_index.where | 188 |
| abstract_inverted_index.which | 31, 90 |
| abstract_inverted_index.Column | 0 |
| abstract_inverted_index.Unlike | 87 |
| abstract_inverted_index.builds | 198 |
| abstract_inverted_index.column | 52, 108, 155 |
| abstract_inverted_index.format | 77 |
| abstract_inverted_index.method | 169 |
| abstract_inverted_index.nested | 137 |
| abstract_inverted_index.neural | 203 |
| abstract_inverted_index.paper, | 38 |
| abstract_inverted_index.recent | 200 |
| abstract_inverted_index.scarce | 192 |
| abstract_inverted_index.schema | 11, 183, 218 |
| abstract_inverted_index.tackle | 104 |
| abstract_inverted_index.types. | 86, 139 |
| abstract_inverted_index.SNMatch | 62, 99, 121 |
| abstract_inverted_index.Siamese | 48 |
| abstract_inverted_index.TF-IDF, | 163 |
| abstract_inverted_index.ability | 66 |
| abstract_inverted_index.columns | 73 |
| abstract_inverted_index.complex | 135 |
| abstract_inverted_index.crucial | 5 |
| abstract_inverted_index.current | 124 |
| abstract_inverted_index.dealing | 15 |
| abstract_inverted_index.growing | 212 |
| abstract_inverted_index.keyword | 94 |
| abstract_inverted_index.labeled | 34, 56, 116, 189 |
| abstract_inverted_index.limited | 115 |
| abstract_inverted_index.massive | 112 |
| abstract_inverted_index.methods | 24, 160 |
| abstract_inverted_index.models, | 30 |
| abstract_inverted_index.network | 49 |
| abstract_inverted_index.novelty | 60 |
| abstract_inverted_index.promise | 172 |
| abstract_inverted_index.propose | 40 |
| abstract_inverted_index.require | 32 |
| abstract_inverted_index.tabular | 21, 221 |
| abstract_inverted_index.volumes | 18 |
| abstract_inverted_index.without | 55 |
| abstract_inverted_index.Existing | 23 |
| abstract_inverted_index.SNMatch, | 41 |
| abstract_inverted_index.advances | 201 |
| abstract_inverted_index.approach | 44 |
| abstract_inverted_index.compared | 158 |
| abstract_inverted_index.datasets | 113, 147 |
| abstract_inverted_index.features | 80 |
| abstract_inverted_index.generate | 68 |
| abstract_inverted_index.handling | 134 |
| abstract_inverted_index.learning | 29, 102 |
| abstract_inverted_index.mapping, | 184 |
| abstract_inverted_index.matching | 95, 219 |
| abstract_inverted_index.methods, | 89 |
| abstract_inverted_index.proposed | 168 |
| abstract_inverted_index.research | 215 |
| abstract_inverted_index.semantic | 53, 70, 79, 85, 109, 138 |
| abstract_inverted_index.superior | 152 |
| abstract_inverted_index.training | 57 |
| abstract_inverted_index.validate | 148 |
| abstract_inverted_index.Extensive | 140 |
| abstract_inverted_index.FastText, | 164 |
| abstract_inverted_index.accuracy, | 131 |
| abstract_inverted_index.achieving | 151 |
| abstract_inverted_index.automated | 182 |
| abstract_inverted_index.automatic | 217 |
| abstract_inverted_index.cleaning, | 180 |
| abstract_inverted_index.detecting | 51 |
| abstract_inverted_index.detection | 2, 110, 157 |
| abstract_inverted_index.examples. | 117 |
| abstract_inverted_index.extensive | 33 |
| abstract_inverted_index.learning, | 208 |
| abstract_inverted_index.leverages | 100 |
| abstract_inverted_index.matching, | 12 |
| abstract_inverted_index.practical | 174 |
| abstract_inverted_index.scenarios | 187 |
| abstract_inverted_index.typically | 91 |
| abstract_inverted_index.unlabeled | 20 |
| abstract_inverted_index.challenges | 106 |
| abstract_inverted_index.clustering | 82, 130 |
| abstract_inverted_index.embeddings | 71, 205 |
| abstract_inverted_index.especially | 132 |
| abstract_inverted_index.supervised | 28, 97 |
| abstract_inverted_index.techniques | 126 |
| abstract_inverted_index.considering | 75 |
| abstract_inverted_index.demonstrate | 119 |
| abstract_inverted_index.experiments | 141 |
| abstract_inverted_index.integration | 9 |
| abstract_inverted_index.outperforms | 123 |
| abstract_inverted_index.performance | 153 |
| abstract_inverted_index.traditional | 88 |
| abstract_inverted_index.Furthermore, | 195 |
| abstract_inverted_index.applications | 175 |
| abstract_inverted_index.contributing | 209 |
| abstract_inverted_index.integration, | 178 |
| abstract_inverted_index.particularly | 13, 185 |
| abstract_inverted_index.unavailable. | 194 |
| abstract_inverted_index.unsupervised | 43, 101, 207 |
| abstract_inverted_index.network-based | 204 |
| abstract_inverted_index.semantic-type | 1, 156 |
| abstract_inverted_index.significantly | 122 |
| abstract_inverted_index.effectiveness, | 150 |
| abstract_inverted_index.understanding. | 223 |
| abstract_inverted_index.VizNet-Manyeyes | 146 |
| abstract_inverted_index.classification, | 98 |
| abstract_inverted_index.state-of-the-art | 125 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.92593984 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |