SNUH methylation classifier for CNS tumors Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1186/s13148-025-01824-0
Background Methylation profiling of central nervous system (CNS) tumors, pioneered by the German Cancer Research Center, has significantly improved diagnostic accuracy. This study aimed to further enhance the performance of methylation classifiers by leveraging publicly available data and innovative machine-learning techniques. Results Seoul National University Hospital Methylation Classifier (SNUH-MC) addressed data imbalance using the Synthetic Minority Over-sampling Technique (SMOTE) algorithm and incorporated OpenMax within a Multi-Layer Perceptron to prevent labeling errors in low-confidence diagnoses. Compared to two published CNS tumor methylation classification models (DKFZ-MC: Deutsches Krebsforschungszentrum Methylation Classifier v11b4: RandomForest, 767-MC: Multi-Layer Perceptron), our SNUH-MC showed improved performance in F1-score. For ‘Filtered Test Data Set 1,’ the SNUH-MC achieved higher F1-micro (0.932) and F1-macro (0.919) scores compared to DKFZ-MC v11b4 (F1-micro: 0.907, F1-macro: 0.627). We evaluated the performance of three classifiers; SNUH-MC, DKFZ-MC v11b4, and DKFZ-MC v12.5, using specific criteria. We set established ‘Decisions’ categories based on histopathology, clinical information, and next-generation sequencing to assess the classification results. When applied to 193 unknown SNUH methylation data samples, SNUH-MC notably improved diagnosis compared to DKFZ-MC v11b4. Specifically, 17 cases were reclassified as ‘Match’ and 34 cases as ‘Likely Match’ when transitioning from DKFZ-MC v11b4 to SNUH-MC. Additionally, SNUH-MC demonstrated similar results to DKFZ-MC v12.5 for 23 cases that were unclassified by v11b4. Conclusions This study presents SNUH-MC, an innovative methylation-based classification tool that significantly advances the field of neuropathology and bioinformatics. Our classifier incorporates cutting-edge techniques such as the SMOTE and OpenMax resulting in improved diagnostic accuracy and robustness, particularly when dealing with unknown or noisy data.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1186/s13148-025-01824-0
- https://clinicalepigeneticsjournal.biomedcentral.com/counter/pdf/10.1186/s13148-025-01824-0
- OA Status
- gold
- Cited By
- 2
- References
- 42
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4408362364
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4408362364Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1186/s13148-025-01824-0Digital Object Identifier
- Title
-
SNUH methylation classifier for CNS tumorsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-12Full publication date if available
- Authors
-
Kwang-Hoon Lee, Jaemin Jeon, Jin Woo Park, Suwan Yu, Jae‐Kyung Won, Kwangsoo Kim, Chul‐Kee Park, Sung‐Hye ParkList of authors in order
- Landing page
-
https://doi.org/10.1186/s13148-025-01824-0Publisher landing page
- PDF URL
-
https://clinicalepigeneticsjournal.biomedcentral.com/counter/pdf/10.1186/s13148-025-01824-0Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://clinicalepigeneticsjournal.biomedcentral.com/counter/pdf/10.1186/s13148-025-01824-0Direct OA link when available
- Concepts
-
Perceptron, Classifier (UML), Methylation, Artificial intelligence, Biology, Computer science, Artificial neural network, Gene, GeneticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- References (count)
-
42Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4408362364 |
|---|---|
| doi | https://doi.org/10.1186/s13148-025-01824-0 |
| ids.doi | https://doi.org/10.1186/s13148-025-01824-0 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40075518 |
| ids.openalex | https://openalex.org/W4408362364 |
| fwci | 11.33895802 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D019175 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | DNA Methylation |
| mesh[2].qualifier_ui | Q000235 |
| mesh[2].descriptor_ui | D016543 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | genetics |
| mesh[2].descriptor_name | Central Nervous System Neoplasms |
| mesh[3].qualifier_ui | Q000175 |
| mesh[3].descriptor_ui | D016543 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | diagnosis |
| mesh[3].descriptor_name | Central Nervous System Neoplasms |
| mesh[4].qualifier_ui | Q000145 |
| mesh[4].descriptor_ui | D016543 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | classification |
| mesh[4].descriptor_name | Central Nervous System Neoplasms |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D000069550 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Machine Learning |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D000465 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Algorithms |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D005260 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Female |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D008297 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Male |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D006801 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Humans |
| mesh[10].qualifier_ui | Q000235 |
| mesh[10].descriptor_ui | D019175 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | genetics |
| mesh[10].descriptor_name | DNA Methylation |
| mesh[11].qualifier_ui | Q000235 |
| mesh[11].descriptor_ui | D016543 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | genetics |
| mesh[11].descriptor_name | Central Nervous System Neoplasms |
| mesh[12].qualifier_ui | Q000175 |
| mesh[12].descriptor_ui | D016543 |
| mesh[12].is_major_topic | True |
| mesh[12].qualifier_name | diagnosis |
| mesh[12].descriptor_name | Central Nervous System Neoplasms |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D000069550 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Machine Learning |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D000465 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Algorithms |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D056910 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Republic of Korea |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D006801 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Humans |
| mesh[17].qualifier_ui | Q000235 |
| mesh[17].descriptor_ui | D019175 |
| mesh[17].is_major_topic | True |
| mesh[17].qualifier_name | genetics |
| mesh[17].descriptor_name | DNA Methylation |
| mesh[18].qualifier_ui | Q000235 |
| mesh[18].descriptor_ui | D016543 |
| mesh[18].is_major_topic | True |
| mesh[18].qualifier_name | genetics |
| mesh[18].descriptor_name | Central Nervous System Neoplasms |
| mesh[19].qualifier_ui | Q000175 |
| mesh[19].descriptor_ui | D016543 |
| mesh[19].is_major_topic | True |
| mesh[19].qualifier_name | diagnosis |
| mesh[19].descriptor_name | Central Nervous System Neoplasms |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D000069550 |
| mesh[20].is_major_topic | True |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Machine Learning |
| mesh[21].qualifier_ui | |
| mesh[21].descriptor_ui | D000465 |
| mesh[21].is_major_topic | False |
| mesh[21].qualifier_name | |
| mesh[21].descriptor_name | Algorithms |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D056910 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Republic of Korea |
| mesh[23].qualifier_ui | |
| mesh[23].descriptor_ui | D006801 |
| mesh[23].is_major_topic | False |
| mesh[23].qualifier_name | |
| mesh[23].descriptor_name | Humans |
| mesh[24].qualifier_ui | Q000235 |
| mesh[24].descriptor_ui | D019175 |
| mesh[24].is_major_topic | True |
| mesh[24].qualifier_name | genetics |
| mesh[24].descriptor_name | DNA Methylation |
| mesh[25].qualifier_ui | Q000235 |
| mesh[25].descriptor_ui | D016543 |
| mesh[25].is_major_topic | True |
| mesh[25].qualifier_name | genetics |
| mesh[25].descriptor_name | Central Nervous System Neoplasms |
| mesh[26].qualifier_ui | Q000175 |
| mesh[26].descriptor_ui | D016543 |
| mesh[26].is_major_topic | True |
| mesh[26].qualifier_name | diagnosis |
| mesh[26].descriptor_name | Central Nervous System Neoplasms |
| mesh[27].qualifier_ui | |
| mesh[27].descriptor_ui | D000069550 |
| mesh[27].is_major_topic | True |
| mesh[27].qualifier_name | |
| mesh[27].descriptor_name | Machine Learning |
| mesh[28].qualifier_ui | |
| mesh[28].descriptor_ui | D000465 |
| mesh[28].is_major_topic | False |
| mesh[28].qualifier_name | |
| mesh[28].descriptor_name | Algorithms |
| mesh[29].qualifier_ui | |
| mesh[29].descriptor_ui | D056910 |
| mesh[29].is_major_topic | False |
| mesh[29].qualifier_name | |
| mesh[29].descriptor_name | Republic of Korea |
| type | article |
| title | SNUH methylation classifier for CNS tumors |
| awards[0].id | https://openalex.org/G724706351 |
| awards[0].funder_id | https://openalex.org/F4320335489 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2019-0567 |
| awards[0].funder_display_name | Institute for Information and Communications Technology Promotion |
| awards[1].id | https://openalex.org/G1889600028 |
| awards[1].funder_id | https://openalex.org/F4320322107 |
| awards[1].display_name | |
| awards[1].funder_award_id | HI14C1277 |
| awards[1].funder_display_name | Korea Health Industry Development Institute |
| biblio.issue | 1 |
| biblio.volume | 17 |
| biblio.last_page | 47 |
| biblio.first_page | 47 |
| grants[0].funder | https://openalex.org/F4320322107 |
| grants[0].award_id | HI14C1277 |
| grants[0].funder_display_name | Korea Health Industry Development Institute |
| grants[1].funder | https://openalex.org/F4320335489 |
| grants[1].award_id | 2019-0567 |
| grants[1].funder_display_name | Institute for Information and Communications Technology Promotion |
| topics[0].id | https://openalex.org/T10129 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9988999962806702 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2716 |
| topics[0].subfield.display_name | Genetics |
| topics[0].display_name | Glioma Diagnosis and Treatment |
| topics[1].id | https://openalex.org/T10269 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9977999925613403 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Epigenetics and DNA Methylation |
| topics[2].id | https://openalex.org/T10515 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9926999807357788 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1306 |
| topics[2].subfield.display_name | Cancer Research |
| topics[2].display_name | Cancer-related molecular mechanisms research |
| funders[0].id | https://openalex.org/F4320322107 |
| funders[0].ror | https://ror.org/00fdzyk40 |
| funders[0].display_name | Korea Health Industry Development Institute |
| funders[1].id | https://openalex.org/F4320335489 |
| funders[1].ror | https://ror.org/01g0hqq23 |
| funders[1].display_name | Institute for Information and Communications Technology Promotion |
| is_xpac | False |
| apc_list.value | 2090 |
| apc_list.currency | GBP |
| apc_list.value_usd | 2563 |
| apc_paid.value | 2090 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 2563 |
| concepts[0].id | https://openalex.org/C60908668 |
| concepts[0].level | 3 |
| concepts[0].score | 0.5893683433532715 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q690207 |
| concepts[0].display_name | Perceptron |
| concepts[1].id | https://openalex.org/C95623464 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5855985879898071 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[1].display_name | Classifier (UML) |
| concepts[2].id | https://openalex.org/C33288867 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5155563354492188 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q518328 |
| concepts[2].display_name | Methylation |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4066988229751587 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C86803240 |
| concepts[4].level | 0 |
| concepts[4].score | 0.36883699893951416 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[4].display_name | Biology |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.3600578010082245 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C50644808 |
| concepts[6].level | 2 |
| concepts[6].score | 0.1771184504032135 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[6].display_name | Artificial neural network |
| concepts[7].id | https://openalex.org/C104317684 |
| concepts[7].level | 2 |
| concepts[7].score | 0.0996863842010498 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[7].display_name | Gene |
| concepts[8].id | https://openalex.org/C54355233 |
| concepts[8].level | 1 |
| concepts[8].score | 0.08884939551353455 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[8].display_name | Genetics |
| keywords[0].id | https://openalex.org/keywords/perceptron |
| keywords[0].score | 0.5893683433532715 |
| keywords[0].display_name | Perceptron |
| keywords[1].id | https://openalex.org/keywords/classifier |
| keywords[1].score | 0.5855985879898071 |
| keywords[1].display_name | Classifier (UML) |
| keywords[2].id | https://openalex.org/keywords/methylation |
| keywords[2].score | 0.5155563354492188 |
| keywords[2].display_name | Methylation |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.4066988229751587 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/biology |
| keywords[4].score | 0.36883699893951416 |
| keywords[4].display_name | Biology |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.3600578010082245 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[6].score | 0.1771184504032135 |
| keywords[6].display_name | Artificial neural network |
| keywords[7].id | https://openalex.org/keywords/gene |
| keywords[7].score | 0.0996863842010498 |
| keywords[7].display_name | Gene |
| keywords[8].id | https://openalex.org/keywords/genetics |
| keywords[8].score | 0.08884939551353455 |
| keywords[8].display_name | Genetics |
| language | en |
| locations[0].id | doi:10.1186/s13148-025-01824-0 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S200416800 |
| locations[0].source.issn | 1868-7075, 1868-7083 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1868-7075 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Clinical Epigenetics |
| locations[0].source.host_organization | https://openalex.org/P4310320256 |
| locations[0].source.host_organization_name | BioMed Central |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320256, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | BioMed Central, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://clinicalepigeneticsjournal.biomedcentral.com/counter/pdf/10.1186/s13148-025-01824-0 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Clinical Epigenetics |
| locations[0].landing_page_url | https://doi.org/10.1186/s13148-025-01824-0 |
| locations[1].id | pmid:40075518 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Clinical epigenetics |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40075518 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:11905536 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | publishedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | True |
| locations[2].is_published | True |
| locations[2].raw_source_name | Clin Epigenetics |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11905536 |
| locations[3].id | pmh:oai:doaj.org/article:2e6a0d8ccaf342dbbdfd8c54fe024f2a |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306401280 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Clinical Epigenetics, Vol 17, Iss 1, Pp 1-19 (2025) |
| locations[3].landing_page_url | https://doaj.org/article/2e6a0d8ccaf342dbbdfd8c54fe024f2a |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5032636825 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9506-9072 |
| authorships[0].author.display_name | Kwang-Hoon Lee |
| authorships[0].countries | KR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I139264467 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Pathology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, Republic of Korea |
| authorships[0].institutions[0].id | https://openalex.org/I139264467 |
| authorships[0].institutions[0].ror | https://ror.org/04h9pn542 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I139264467 |
| authorships[0].institutions[0].country_code | KR |
| authorships[0].institutions[0].display_name | Seoul National University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kwanghoon Lee |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Pathology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, Republic of Korea |
| authorships[1].author.id | https://openalex.org/A5032445177 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Jaemin Jeon |
| authorships[1].countries | KR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I139264467 |
| authorships[1].affiliations[0].raw_affiliation_string | Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea |
| authorships[1].institutions[0].id | https://openalex.org/I139264467 |
| authorships[1].institutions[0].ror | https://ror.org/04h9pn542 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I139264467 |
| authorships[1].institutions[0].country_code | KR |
| authorships[1].institutions[0].display_name | Seoul National University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jaemin Jeon |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea |
| authorships[2].author.id | https://openalex.org/A5100335515 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0801-8208 |
| authorships[2].author.display_name | Jin Woo Park |
| authorships[2].countries | KR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I193775966 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea |
| authorships[2].institutions[0].id | https://openalex.org/I193775966 |
| authorships[2].institutions[0].ror | https://ror.org/01wjejq96 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I193775966 |
| authorships[2].institutions[0].country_code | KR |
| authorships[2].institutions[0].display_name | Yonsei University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jin Woo Park |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea |
| authorships[3].author.id | https://openalex.org/A5109791493 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Suwan Yu |
| authorships[3].countries | KR |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I139264467 |
| authorships[3].affiliations[0].raw_affiliation_string | Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea |
| authorships[3].institutions[0].id | https://openalex.org/I139264467 |
| authorships[3].institutions[0].ror | https://ror.org/04h9pn542 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I139264467 |
| authorships[3].institutions[0].country_code | KR |
| authorships[3].institutions[0].display_name | Seoul National University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Suwan Yu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea |
| authorships[4].author.id | https://openalex.org/A5037477811 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1459-8093 |
| authorships[4].author.display_name | Jae‐Kyung Won |
| authorships[4].countries | KR |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I139264467 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Pathology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, Republic of Korea |
| authorships[4].institutions[0].id | https://openalex.org/I139264467 |
| authorships[4].institutions[0].ror | https://ror.org/04h9pn542 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I139264467 |
| authorships[4].institutions[0].country_code | KR |
| authorships[4].institutions[0].display_name | Seoul National University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Jae-Kyung Won |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Pathology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, Republic of Korea |
| authorships[5].author.id | https://openalex.org/A5100443628 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-4586-5062 |
| authorships[5].author.display_name | Kwangsoo Kim |
| authorships[5].countries | KR |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I139264467 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Medicine, Seoul National University, Seoul, Republic of Korea |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I2802835388 |
| authorships[5].affiliations[1].raw_affiliation_string | Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul, Republic of Korea |
| authorships[5].institutions[0].id | https://openalex.org/I139264467 |
| authorships[5].institutions[0].ror | https://ror.org/04h9pn542 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I139264467 |
| authorships[5].institutions[0].country_code | KR |
| authorships[5].institutions[0].display_name | Seoul National University |
| authorships[5].institutions[1].id | https://openalex.org/I2802835388 |
| authorships[5].institutions[1].ror | https://ror.org/01z4nnt86 |
| authorships[5].institutions[1].type | healthcare |
| authorships[5].institutions[1].lineage | https://openalex.org/I2802835388 |
| authorships[5].institutions[1].country_code | KR |
| authorships[5].institutions[1].display_name | Seoul National University Hospital |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Kwangsoo Kim |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Medicine, Seoul National University, Seoul, Republic of Korea, Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul, Republic of Korea |
| authorships[6].author.id | https://openalex.org/A5100742496 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-2350-9876 |
| authorships[6].author.display_name | Chul‐Kee Park |
| authorships[6].countries | KR |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I139264467 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea |
| authorships[6].institutions[0].id | https://openalex.org/I139264467 |
| authorships[6].institutions[0].ror | https://ror.org/04h9pn542 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I139264467 |
| authorships[6].institutions[0].country_code | KR |
| authorships[6].institutions[0].display_name | Seoul National University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Chul-Kee Park |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea |
| authorships[7].author.id | https://openalex.org/A5107936772 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Sung‐Hye Park |
| authorships[7].countries | KR |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I139264467 |
| authorships[7].affiliations[0].raw_affiliation_string | Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea |
| authorships[7].institutions[0].id | https://openalex.org/I139264467 |
| authorships[7].institutions[0].ror | https://ror.org/04h9pn542 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I139264467 |
| authorships[7].institutions[0].country_code | KR |
| authorships[7].institutions[0].display_name | Seoul National University |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Sung-Hye Park |
| authorships[7].is_corresponding | True |
| authorships[7].raw_affiliation_strings | Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://clinicalepigeneticsjournal.biomedcentral.com/counter/pdf/10.1186/s13148-025-01824-0 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | SNUH methylation classifier for CNS tumors |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10129 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9988999962806702 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2716 |
| primary_topic.subfield.display_name | Genetics |
| primary_topic.display_name | Glioma Diagnosis and Treatment |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2082860237, https://openalex.org/W2119695867, https://openalex.org/W2130076355, https://openalex.org/W1990804418, https://openalex.org/W1993764875, https://openalex.org/W2046158694, https://openalex.org/W2788277189, https://openalex.org/W2013243191, https://openalex.org/W1971568933 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1186/s13148-025-01824-0 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S200416800 |
| best_oa_location.source.issn | 1868-7075, 1868-7083 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1868-7075 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Clinical Epigenetics |
| best_oa_location.source.host_organization | https://openalex.org/P4310320256 |
| best_oa_location.source.host_organization_name | BioMed Central |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320256, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | BioMed Central, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://clinicalepigeneticsjournal.biomedcentral.com/counter/pdf/10.1186/s13148-025-01824-0 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Clinical Epigenetics |
| best_oa_location.landing_page_url | https://doi.org/10.1186/s13148-025-01824-0 |
| primary_location.id | doi:10.1186/s13148-025-01824-0 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S200416800 |
| primary_location.source.issn | 1868-7075, 1868-7083 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1868-7075 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Clinical Epigenetics |
| primary_location.source.host_organization | https://openalex.org/P4310320256 |
| primary_location.source.host_organization_name | BioMed Central |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320256, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | BioMed Central, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://clinicalepigeneticsjournal.biomedcentral.com/counter/pdf/10.1186/s13148-025-01824-0 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Clinical Epigenetics |
| primary_location.landing_page_url | https://doi.org/10.1186/s13148-025-01824-0 |
| publication_date | 2025-03-12 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2112567075, https://openalex.org/W3003863259, https://openalex.org/W2737542366, https://openalex.org/W1949037014, https://openalex.org/W4313445357, https://openalex.org/W3174246647, https://openalex.org/W3135761811, https://openalex.org/W3216808356, https://openalex.org/W2161535481, https://openalex.org/W4225284565, https://openalex.org/W4385340599, https://openalex.org/W2787816121, https://openalex.org/W3214358654, https://openalex.org/W4300326282, https://openalex.org/W6967085660, https://openalex.org/W2758448576, https://openalex.org/W1996288295, https://openalex.org/W4381715190, https://openalex.org/W4387420839, https://openalex.org/W4366984801, https://openalex.org/W1919257374, https://openalex.org/W2811036728, https://openalex.org/W4220977386, https://openalex.org/W3195044397, https://openalex.org/W4360865000, https://openalex.org/W3187508953, https://openalex.org/W2993515799, https://openalex.org/W2944076627, https://openalex.org/W2998197281, https://openalex.org/W2263522623, https://openalex.org/W2282164829, https://openalex.org/W2592831865, https://openalex.org/W3036199006, https://openalex.org/W2160716539, https://openalex.org/W2047770493, https://openalex.org/W4316500416, https://openalex.org/W2760946358, https://openalex.org/W4321350041, https://openalex.org/W2948930564, https://openalex.org/W4327684001, https://openalex.org/W2993489868, https://openalex.org/W3136631041 |
| referenced_works_count | 42 |
| abstract_inverted_index.a | 65 |
| abstract_inverted_index.17 | 177 |
| abstract_inverted_index.23 | 205 |
| abstract_inverted_index.34 | 184 |
| abstract_inverted_index.We | 125, 141 |
| abstract_inverted_index.an | 217 |
| abstract_inverted_index.as | 181, 186, 237 |
| abstract_inverted_index.by | 11, 33, 210 |
| abstract_inverted_index.in | 72, 99, 243 |
| abstract_inverted_index.of | 4, 30, 129, 227 |
| abstract_inverted_index.on | 147 |
| abstract_inverted_index.or | 254 |
| abstract_inverted_index.to | 25, 68, 76, 118, 154, 161, 173, 194, 201 |
| abstract_inverted_index.193 | 162 |
| abstract_inverted_index.CNS | 79 |
| abstract_inverted_index.For | 101 |
| abstract_inverted_index.Our | 231 |
| abstract_inverted_index.Set | 105 |
| abstract_inverted_index.and | 38, 61, 113, 135, 151, 183, 229, 240, 247 |
| abstract_inverted_index.for | 204 |
| abstract_inverted_index.has | 17 |
| abstract_inverted_index.our | 94 |
| abstract_inverted_index.set | 142 |
| abstract_inverted_index.the | 12, 28, 54, 107, 127, 156, 225, 238 |
| abstract_inverted_index.two | 77 |
| abstract_inverted_index.Data | 104 |
| abstract_inverted_index.SNUH | 164 |
| abstract_inverted_index.Test | 103 |
| abstract_inverted_index.This | 22, 213 |
| abstract_inverted_index.When | 159 |
| abstract_inverted_index.data | 37, 51, 166 |
| abstract_inverted_index.from | 191 |
| abstract_inverted_index.such | 236 |
| abstract_inverted_index.that | 207, 222 |
| abstract_inverted_index.tool | 221 |
| abstract_inverted_index.were | 179, 208 |
| abstract_inverted_index.when | 189, 250 |
| abstract_inverted_index.with | 252 |
| abstract_inverted_index.(CNS) | 8 |
| abstract_inverted_index.1,’ | 106 |
| abstract_inverted_index.SMOTE | 239 |
| abstract_inverted_index.Seoul | 43 |
| abstract_inverted_index.aimed | 24 |
| abstract_inverted_index.based | 146 |
| abstract_inverted_index.cases | 178, 185, 206 |
| abstract_inverted_index.data. | 256 |
| abstract_inverted_index.field | 226 |
| abstract_inverted_index.noisy | 255 |
| abstract_inverted_index.study | 23, 214 |
| abstract_inverted_index.three | 130 |
| abstract_inverted_index.tumor | 80 |
| abstract_inverted_index.using | 53, 138 |
| abstract_inverted_index.v11b4 | 120, 193 |
| abstract_inverted_index.v12.5 | 203 |
| abstract_inverted_index.0.907, | 122 |
| abstract_inverted_index.Cancer | 14 |
| abstract_inverted_index.German | 13 |
| abstract_inverted_index.assess | 155 |
| abstract_inverted_index.errors | 71 |
| abstract_inverted_index.higher | 110 |
| abstract_inverted_index.models | 83 |
| abstract_inverted_index.scores | 116 |
| abstract_inverted_index.showed | 96 |
| abstract_inverted_index.system | 7 |
| abstract_inverted_index.v11b4, | 134 |
| abstract_inverted_index.v11b4. | 175, 211 |
| abstract_inverted_index.v11b4: | 89 |
| abstract_inverted_index.v12.5, | 137 |
| abstract_inverted_index.within | 64 |
| abstract_inverted_index.(0.919) | 115 |
| abstract_inverted_index.(0.932) | 112 |
| abstract_inverted_index.(SMOTE) | 59 |
| abstract_inverted_index.0.627). | 124 |
| abstract_inverted_index.767-MC: | 91 |
| abstract_inverted_index.Center, | 16 |
| abstract_inverted_index.DKFZ-MC | 119, 133, 136, 174, 192, 202 |
| abstract_inverted_index.OpenMax | 63, 241 |
| abstract_inverted_index.Results | 42 |
| abstract_inverted_index.SNUH-MC | 95, 108, 168, 197 |
| abstract_inverted_index.applied | 160 |
| abstract_inverted_index.central | 5 |
| abstract_inverted_index.dealing | 251 |
| abstract_inverted_index.enhance | 27 |
| abstract_inverted_index.further | 26 |
| abstract_inverted_index.nervous | 6 |
| abstract_inverted_index.notably | 169 |
| abstract_inverted_index.prevent | 69 |
| abstract_inverted_index.results | 200 |
| abstract_inverted_index.similar | 199 |
| abstract_inverted_index.tumors, | 9 |
| abstract_inverted_index.unknown | 163, 253 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Compared | 75 |
| abstract_inverted_index.F1-macro | 114 |
| abstract_inverted_index.F1-micro | 111 |
| abstract_inverted_index.Hospital | 46 |
| abstract_inverted_index.Match’ | 188 |
| abstract_inverted_index.Minority | 56 |
| abstract_inverted_index.National | 44 |
| abstract_inverted_index.Research | 15 |
| abstract_inverted_index.SNUH-MC, | 132, 216 |
| abstract_inverted_index.SNUH-MC. | 195 |
| abstract_inverted_index.accuracy | 246 |
| abstract_inverted_index.achieved | 109 |
| abstract_inverted_index.advances | 224 |
| abstract_inverted_index.clinical | 149 |
| abstract_inverted_index.compared | 117, 172 |
| abstract_inverted_index.improved | 19, 97, 170, 244 |
| abstract_inverted_index.labeling | 70 |
| abstract_inverted_index.presents | 215 |
| abstract_inverted_index.publicly | 35 |
| abstract_inverted_index.results. | 158 |
| abstract_inverted_index.samples, | 167 |
| abstract_inverted_index.specific | 139 |
| abstract_inverted_index.(DKFZ-MC: | 84 |
| abstract_inverted_index.(SNUH-MC) | 49 |
| abstract_inverted_index.Deutsches | 85 |
| abstract_inverted_index.F1-macro: | 123 |
| abstract_inverted_index.F1-score. | 100 |
| abstract_inverted_index.Synthetic | 55 |
| abstract_inverted_index.Technique | 58 |
| abstract_inverted_index.accuracy. | 21 |
| abstract_inverted_index.addressed | 50 |
| abstract_inverted_index.algorithm | 60 |
| abstract_inverted_index.available | 36 |
| abstract_inverted_index.criteria. | 140 |
| abstract_inverted_index.diagnosis | 171 |
| abstract_inverted_index.evaluated | 126 |
| abstract_inverted_index.imbalance | 52 |
| abstract_inverted_index.pioneered | 10 |
| abstract_inverted_index.profiling | 3 |
| abstract_inverted_index.published | 78 |
| abstract_inverted_index.resulting | 242 |
| abstract_inverted_index.‘Likely | 187 |
| abstract_inverted_index.(F1-micro: | 121 |
| abstract_inverted_index.Background | 1 |
| abstract_inverted_index.Classifier | 48, 88 |
| abstract_inverted_index.Perceptron | 67 |
| abstract_inverted_index.University | 45 |
| abstract_inverted_index.categories | 145 |
| abstract_inverted_index.classifier | 232 |
| abstract_inverted_index.diagnoses. | 74 |
| abstract_inverted_index.diagnostic | 20, 245 |
| abstract_inverted_index.innovative | 39, 218 |
| abstract_inverted_index.leveraging | 34 |
| abstract_inverted_index.sequencing | 153 |
| abstract_inverted_index.techniques | 235 |
| abstract_inverted_index.Conclusions | 212 |
| abstract_inverted_index.Methylation | 2, 47, 87 |
| abstract_inverted_index.Multi-Layer | 66, 92 |
| abstract_inverted_index.classifiers | 32 |
| abstract_inverted_index.established | 143 |
| abstract_inverted_index.methylation | 31, 81, 165 |
| abstract_inverted_index.performance | 29, 98, 128 |
| abstract_inverted_index.robustness, | 248 |
| abstract_inverted_index.techniques. | 41 |
| abstract_inverted_index.‘Filtered | 102 |
| abstract_inverted_index.‘Match’ | 182 |
| abstract_inverted_index.Perceptron), | 93 |
| abstract_inverted_index.classifiers; | 131 |
| abstract_inverted_index.cutting-edge | 234 |
| abstract_inverted_index.demonstrated | 198 |
| abstract_inverted_index.incorporated | 62 |
| abstract_inverted_index.incorporates | 233 |
| abstract_inverted_index.information, | 150 |
| abstract_inverted_index.particularly | 249 |
| abstract_inverted_index.reclassified | 180 |
| abstract_inverted_index.unclassified | 209 |
| abstract_inverted_index.Additionally, | 196 |
| abstract_inverted_index.Over-sampling | 57 |
| abstract_inverted_index.RandomForest, | 90 |
| abstract_inverted_index.Specifically, | 176 |
| abstract_inverted_index.significantly | 18, 223 |
| abstract_inverted_index.transitioning | 190 |
| abstract_inverted_index.classification | 82, 157, 220 |
| abstract_inverted_index.low-confidence | 73 |
| abstract_inverted_index.neuropathology | 228 |
| abstract_inverted_index.bioinformatics. | 230 |
| abstract_inverted_index.histopathology, | 148 |
| abstract_inverted_index.next-generation | 152 |
| abstract_inverted_index.‘Decisions’ | 144 |
| abstract_inverted_index.machine-learning | 40 |
| abstract_inverted_index.methylation-based | 219 |
| abstract_inverted_index.Krebsforschungszentrum | 86 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| corresponding_author_ids | https://openalex.org/A5107936772 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| corresponding_institution_ids | https://openalex.org/I139264467 |
| citation_normalized_percentile.value | 0.93697863 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |