Soft Semi-Supervised Deep Learning-Based Clustering Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3390/app13179673
Semi-supervised clustering typically relies on both labeled and unlabeled data to guide the learning process towards the optimal data partition and to prevent falling into local minima. However, researchers’ efforts made to improve existing semi-supervised clustering approaches are relatively scarce compared to the contributions made to enhance the state-of-the-art fully unsupervised clustering approaches. In this paper, we propose a novel semi-supervised deep clustering approach, named Soft Constrained Deep Clustering (SC-DEC), that aims to address the limitations exhibited by existing semi-supervised clustering approaches. Specifically, the proposed approach leverages a deep neural network architecture and generates fuzzy membership degrees that better reflect the true partition of the data. In particular, the proposed approach uses side-information and formulates it as a set of soft pairwise constraints to supervise the machine learning process. This supervision information is expressed using rather relaxed constraints named “should-link” constraints. Such constraints determine whether the pairs of data instances should be assigned to the same or different cluster(s). In fact, the clustering task was formulated as an optimization problem via the minimization of a novel objective function. Moreover, the proposed approach’s performance was assessed via extensive experiments using benchmark datasets. Furthermore, the proposed approach was compared to relevant state-of-the-art clustering algorithms, and the obtained results demonstrate the impact of using minimal previous knowledge about the data in improving the overall clustering performance.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/app13179673
- https://www.mdpi.com/2076-3417/13/17/9673/pdf?version=1693213570
- OA Status
- gold
- Cited By
- 4
- References
- 48
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4386219813
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4386219813Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/app13179673Digital Object Identifier
- Title
-
Soft Semi-Supervised Deep Learning-Based ClusteringWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-08-27Full publication date if available
- Authors
-
Mona Suliman AlZuhair, Mohamed Maher Ben Ismail, Ouiem BchirList of authors in order
- Landing page
-
https://doi.org/10.3390/app13179673Publisher landing page
- PDF URL
-
https://www.mdpi.com/2076-3417/13/17/9673/pdf?version=1693213570Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2076-3417/13/17/9673/pdf?version=1693213570Direct OA link when available
- Concepts
-
Cluster analysis, Computer science, Constrained clustering, Artificial intelligence, Machine learning, Fuzzy clustering, Data mining, Maxima and minima, Correlation clustering, Benchmark (surveying), Canopy clustering algorithm, Pattern recognition (psychology), Mathematics, Mathematical analysis, Geodesy, GeographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4Per-year citation counts (last 5 years)
- References (count)
-
48Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4386219813 |
|---|---|
| doi | https://doi.org/10.3390/app13179673 |
| ids.doi | https://doi.org/10.3390/app13179673 |
| ids.openalex | https://openalex.org/W4386219813 |
| fwci | 1.02177155 |
| type | article |
| title | Soft Semi-Supervised Deep Learning-Based Clustering |
| biblio.issue | 17 |
| biblio.volume | 13 |
| biblio.last_page | 9673 |
| biblio.first_page | 9673 |
| topics[0].id | https://openalex.org/T10637 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9990000128746033 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Advanced Clustering Algorithms Research |
| topics[1].id | https://openalex.org/T10057 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9987000226974487 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Face and Expression Recognition |
| topics[2].id | https://openalex.org/T11550 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.993399977684021 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Text and Document Classification Technologies |
| is_xpac | False |
| apc_list.value | 2300 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2490 |
| apc_paid.value | 2300 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2490 |
| concepts[0].id | https://openalex.org/C73555534 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8024813532829285 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[0].display_name | Cluster analysis |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7012051939964294 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C27964816 |
| concepts[2].level | 5 |
| concepts[2].score | 0.6782035231590271 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5164359 |
| concepts[2].display_name | Constrained clustering |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6170886158943176 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.556494414806366 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C17212007 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5384883880615234 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5511111 |
| concepts[5].display_name | Fuzzy clustering |
| concepts[6].id | https://openalex.org/C124101348 |
| concepts[6].level | 1 |
| concepts[6].score | 0.499967098236084 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[6].display_name | Data mining |
| concepts[7].id | https://openalex.org/C186633575 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4938562512397766 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q845060 |
| concepts[7].display_name | Maxima and minima |
| concepts[8].id | https://openalex.org/C94641424 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4333034157752991 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5172845 |
| concepts[8].display_name | Correlation clustering |
| concepts[9].id | https://openalex.org/C185798385 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4168826639652252 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[9].display_name | Benchmark (surveying) |
| concepts[10].id | https://openalex.org/C104047586 |
| concepts[10].level | 4 |
| concepts[10].score | 0.336597204208374 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q5033439 |
| concepts[10].display_name | Canopy clustering algorithm |
| concepts[11].id | https://openalex.org/C153180895 |
| concepts[11].level | 2 |
| concepts[11].score | 0.33271849155426025 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[11].display_name | Pattern recognition (psychology) |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.15598130226135254 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C134306372 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[13].display_name | Mathematical analysis |
| concepts[14].id | https://openalex.org/C13280743 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[14].display_name | Geodesy |
| concepts[15].id | https://openalex.org/C205649164 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[15].display_name | Geography |
| keywords[0].id | https://openalex.org/keywords/cluster-analysis |
| keywords[0].score | 0.8024813532829285 |
| keywords[0].display_name | Cluster analysis |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7012051939964294 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/constrained-clustering |
| keywords[2].score | 0.6782035231590271 |
| keywords[2].display_name | Constrained clustering |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6170886158943176 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.556494414806366 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/fuzzy-clustering |
| keywords[5].score | 0.5384883880615234 |
| keywords[5].display_name | Fuzzy clustering |
| keywords[6].id | https://openalex.org/keywords/data-mining |
| keywords[6].score | 0.499967098236084 |
| keywords[6].display_name | Data mining |
| keywords[7].id | https://openalex.org/keywords/maxima-and-minima |
| keywords[7].score | 0.4938562512397766 |
| keywords[7].display_name | Maxima and minima |
| keywords[8].id | https://openalex.org/keywords/correlation-clustering |
| keywords[8].score | 0.4333034157752991 |
| keywords[8].display_name | Correlation clustering |
| keywords[9].id | https://openalex.org/keywords/benchmark |
| keywords[9].score | 0.4168826639652252 |
| keywords[9].display_name | Benchmark (surveying) |
| keywords[10].id | https://openalex.org/keywords/canopy-clustering-algorithm |
| keywords[10].score | 0.336597204208374 |
| keywords[10].display_name | Canopy clustering algorithm |
| keywords[11].id | https://openalex.org/keywords/pattern-recognition |
| keywords[11].score | 0.33271849155426025 |
| keywords[11].display_name | Pattern recognition (psychology) |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.15598130226135254 |
| keywords[12].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.3390/app13179673 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210205812 |
| locations[0].source.issn | 2076-3417 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2076-3417 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Applied Sciences |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2076-3417/13/17/9673/pdf?version=1693213570 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Applied Sciences |
| locations[0].landing_page_url | https://doi.org/10.3390/app13179673 |
| locations[1].id | pmh:oai:doaj.org/article:c797660076d84f008e3a47cc3dc44cf5 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Applied Sciences, Vol 13, Iss 17, p 9673 (2023) |
| locations[1].landing_page_url | https://doaj.org/article/c797660076d84f008e3a47cc3dc44cf5 |
| locations[2].id | pmh:oai:mdpi.com:/2076-3417/13/17/9673/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Applied Sciences; Volume 13; Issue 17; Pages: 9673 |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/app13179673 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5070568027 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Mona Suliman AlZuhair |
| authorships[0].countries | SA |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I28022161 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh 11362, Saudi Arabia |
| authorships[0].institutions[0].id | https://openalex.org/I28022161 |
| authorships[0].institutions[0].ror | https://ror.org/02f81g417 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I28022161 |
| authorships[0].institutions[0].country_code | SA |
| authorships[0].institutions[0].display_name | King Saud University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mona Suliman AlZuhair |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh 11362, Saudi Arabia |
| authorships[1].author.id | https://openalex.org/A5029292323 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Mohamed Maher Ben Ismail |
| authorships[1].countries | SA |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I28022161 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh 11362, Saudi Arabia |
| authorships[1].institutions[0].id | https://openalex.org/I28022161 |
| authorships[1].institutions[0].ror | https://ror.org/02f81g417 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I28022161 |
| authorships[1].institutions[0].country_code | SA |
| authorships[1].institutions[0].display_name | King Saud University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mohamed Maher Ben Ismail |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh 11362, Saudi Arabia |
| authorships[2].author.id | https://openalex.org/A5017213869 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3491-6055 |
| authorships[2].author.display_name | Ouiem Bchir |
| authorships[2].countries | SA |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I28022161 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh 11362, Saudi Arabia |
| authorships[2].institutions[0].id | https://openalex.org/I28022161 |
| authorships[2].institutions[0].ror | https://ror.org/02f81g417 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I28022161 |
| authorships[2].institutions[0].country_code | SA |
| authorships[2].institutions[0].display_name | King Saud University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Ouiem Bchir |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh 11362, Saudi Arabia |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2076-3417/13/17/9673/pdf?version=1693213570 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Soft Semi-Supervised Deep Learning-Based Clustering |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10637 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9990000128746033 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Advanced Clustering Algorithms Research |
| related_works | https://openalex.org/W2361242132, https://openalex.org/W2892323093, https://openalex.org/W2353443653, https://openalex.org/W2374506950, https://openalex.org/W2556490192, https://openalex.org/W3140018618, https://openalex.org/W2186905933, https://openalex.org/W180210362, https://openalex.org/W1982635649, https://openalex.org/W2803666455 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/app13179673 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210205812 |
| best_oa_location.source.issn | 2076-3417 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2076-3417 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Applied Sciences |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2076-3417/13/17/9673/pdf?version=1693213570 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Applied Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.3390/app13179673 |
| primary_location.id | doi:10.3390/app13179673 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210205812 |
| primary_location.source.issn | 2076-3417 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2076-3417 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Applied Sciences |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2076-3417/13/17/9673/pdf?version=1693213570 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Applied Sciences |
| primary_location.landing_page_url | https://doi.org/10.3390/app13179673 |
| publication_date | 2023-08-27 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2886330306, https://openalex.org/W2127906599, https://openalex.org/W3021723647, https://openalex.org/W2884851420, https://openalex.org/W2161160262, https://openalex.org/W1998871699, https://openalex.org/W2153233077, https://openalex.org/W6720719261, https://openalex.org/W1568794265, https://openalex.org/W2462597051, https://openalex.org/W2163922914, https://openalex.org/W2533545350, https://openalex.org/W6685380521, https://openalex.org/W2914095169, https://openalex.org/W2883725317, https://openalex.org/W2752380479, https://openalex.org/W2765741717, https://openalex.org/W6758990916, https://openalex.org/W3030583876, https://openalex.org/W2608862709, https://openalex.org/W2896623017, https://openalex.org/W2730106296, https://openalex.org/W2964732194, https://openalex.org/W4362471317, https://openalex.org/W2741943936, https://openalex.org/W2897197428, https://openalex.org/W2969545804, https://openalex.org/W2963325132, https://openalex.org/W2802988819, https://openalex.org/W2908698261, https://openalex.org/W2952580290, https://openalex.org/W2981246579, https://openalex.org/W2962997960, https://openalex.org/W3093568685, https://openalex.org/W3015507004, https://openalex.org/W2153839362, https://openalex.org/W6681096077, https://openalex.org/W1977556410, https://openalex.org/W2100659887, https://openalex.org/W2118858186, https://openalex.org/W6682889407, https://openalex.org/W2053677366, https://openalex.org/W2921568088, https://openalex.org/W6645883330, https://openalex.org/W1983198760, https://openalex.org/W2473745301, https://openalex.org/W3080477316, https://openalex.org/W2997574889 |
| referenced_works_count | 48 |
| abstract_inverted_index.a | 58, 87, 117, 174 |
| abstract_inverted_index.In | 53, 106, 159 |
| abstract_inverted_index.an | 167 |
| abstract_inverted_index.as | 116, 166 |
| abstract_inverted_index.be | 151 |
| abstract_inverted_index.by | 77 |
| abstract_inverted_index.in | 217 |
| abstract_inverted_index.is | 132 |
| abstract_inverted_index.it | 115 |
| abstract_inverted_index.of | 103, 119, 147, 173, 209 |
| abstract_inverted_index.on | 4 |
| abstract_inverted_index.or | 156 |
| abstract_inverted_index.to | 10, 21, 31, 41, 45, 72, 123, 153, 197 |
| abstract_inverted_index.we | 56 |
| abstract_inverted_index.and | 7, 20, 92, 113, 202 |
| abstract_inverted_index.are | 37 |
| abstract_inverted_index.set | 118 |
| abstract_inverted_index.the | 12, 16, 42, 47, 74, 83, 100, 104, 108, 125, 145, 154, 161, 171, 179, 192, 203, 207, 215, 219 |
| abstract_inverted_index.via | 170, 185 |
| abstract_inverted_index.was | 164, 183, 195 |
| abstract_inverted_index.Deep | 67 |
| abstract_inverted_index.Soft | 65 |
| abstract_inverted_index.Such | 141 |
| abstract_inverted_index.This | 129 |
| abstract_inverted_index.aims | 71 |
| abstract_inverted_index.both | 5 |
| abstract_inverted_index.data | 9, 18, 148, 216 |
| abstract_inverted_index.deep | 61, 88 |
| abstract_inverted_index.into | 24 |
| abstract_inverted_index.made | 30, 44 |
| abstract_inverted_index.same | 155 |
| abstract_inverted_index.soft | 120 |
| abstract_inverted_index.task | 163 |
| abstract_inverted_index.that | 70, 97 |
| abstract_inverted_index.this | 54 |
| abstract_inverted_index.true | 101 |
| abstract_inverted_index.uses | 111 |
| abstract_inverted_index.about | 214 |
| abstract_inverted_index.data. | 105 |
| abstract_inverted_index.fact, | 160 |
| abstract_inverted_index.fully | 49 |
| abstract_inverted_index.fuzzy | 94 |
| abstract_inverted_index.guide | 11 |
| abstract_inverted_index.local | 25 |
| abstract_inverted_index.named | 64, 138 |
| abstract_inverted_index.novel | 59, 175 |
| abstract_inverted_index.pairs | 146 |
| abstract_inverted_index.using | 134, 188, 210 |
| abstract_inverted_index.better | 98 |
| abstract_inverted_index.impact | 208 |
| abstract_inverted_index.neural | 89 |
| abstract_inverted_index.paper, | 55 |
| abstract_inverted_index.rather | 135 |
| abstract_inverted_index.relies | 3 |
| abstract_inverted_index.scarce | 39 |
| abstract_inverted_index.should | 150 |
| abstract_inverted_index.address | 73 |
| abstract_inverted_index.degrees | 96 |
| abstract_inverted_index.efforts | 29 |
| abstract_inverted_index.enhance | 46 |
| abstract_inverted_index.falling | 23 |
| abstract_inverted_index.improve | 32 |
| abstract_inverted_index.labeled | 6 |
| abstract_inverted_index.machine | 126 |
| abstract_inverted_index.minima. | 26 |
| abstract_inverted_index.minimal | 211 |
| abstract_inverted_index.network | 90 |
| abstract_inverted_index.optimal | 17 |
| abstract_inverted_index.overall | 220 |
| abstract_inverted_index.prevent | 22 |
| abstract_inverted_index.problem | 169 |
| abstract_inverted_index.process | 14 |
| abstract_inverted_index.propose | 57 |
| abstract_inverted_index.reflect | 99 |
| abstract_inverted_index.relaxed | 136 |
| abstract_inverted_index.results | 205 |
| abstract_inverted_index.towards | 15 |
| abstract_inverted_index.whether | 144 |
| abstract_inverted_index.However, | 27 |
| abstract_inverted_index.approach | 85, 110, 194 |
| abstract_inverted_index.assessed | 184 |
| abstract_inverted_index.assigned | 152 |
| abstract_inverted_index.compared | 40, 196 |
| abstract_inverted_index.existing | 33, 78 |
| abstract_inverted_index.learning | 13, 127 |
| abstract_inverted_index.obtained | 204 |
| abstract_inverted_index.pairwise | 121 |
| abstract_inverted_index.previous | 212 |
| abstract_inverted_index.process. | 128 |
| abstract_inverted_index.proposed | 84, 109, 180, 193 |
| abstract_inverted_index.relevant | 198 |
| abstract_inverted_index.(SC-DEC), | 69 |
| abstract_inverted_index.Moreover, | 178 |
| abstract_inverted_index.approach, | 63 |
| abstract_inverted_index.benchmark | 189 |
| abstract_inverted_index.datasets. | 190 |
| abstract_inverted_index.determine | 143 |
| abstract_inverted_index.different | 157 |
| abstract_inverted_index.exhibited | 76 |
| abstract_inverted_index.expressed | 133 |
| abstract_inverted_index.extensive | 186 |
| abstract_inverted_index.function. | 177 |
| abstract_inverted_index.generates | 93 |
| abstract_inverted_index.improving | 218 |
| abstract_inverted_index.instances | 149 |
| abstract_inverted_index.knowledge | 213 |
| abstract_inverted_index.leverages | 86 |
| abstract_inverted_index.objective | 176 |
| abstract_inverted_index.partition | 19, 102 |
| abstract_inverted_index.supervise | 124 |
| abstract_inverted_index.typically | 2 |
| abstract_inverted_index.unlabeled | 8 |
| abstract_inverted_index.Clustering | 68 |
| abstract_inverted_index.approaches | 36 |
| abstract_inverted_index.clustering | 1, 35, 51, 62, 80, 162, 200, 221 |
| abstract_inverted_index.formulated | 165 |
| abstract_inverted_index.formulates | 114 |
| abstract_inverted_index.membership | 95 |
| abstract_inverted_index.relatively | 38 |
| abstract_inverted_index.Constrained | 66 |
| abstract_inverted_index.algorithms, | 201 |
| abstract_inverted_index.approaches. | 52, 81 |
| abstract_inverted_index.cluster(s). | 158 |
| abstract_inverted_index.constraints | 122, 137, 142 |
| abstract_inverted_index.demonstrate | 206 |
| abstract_inverted_index.experiments | 187 |
| abstract_inverted_index.information | 131 |
| abstract_inverted_index.limitations | 75 |
| abstract_inverted_index.particular, | 107 |
| abstract_inverted_index.performance | 182 |
| abstract_inverted_index.supervision | 130 |
| abstract_inverted_index.Furthermore, | 191 |
| abstract_inverted_index.approach’s | 181 |
| abstract_inverted_index.architecture | 91 |
| abstract_inverted_index.constraints. | 140 |
| abstract_inverted_index.minimization | 172 |
| abstract_inverted_index.optimization | 168 |
| abstract_inverted_index.performance. | 222 |
| abstract_inverted_index.unsupervised | 50 |
| abstract_inverted_index.Specifically, | 82 |
| abstract_inverted_index.contributions | 43 |
| abstract_inverted_index.researchers’ | 28 |
| abstract_inverted_index.Semi-supervised | 0 |
| abstract_inverted_index.semi-supervised | 34, 60, 79 |
| abstract_inverted_index.side-information | 112 |
| abstract_inverted_index.state-of-the-art | 48, 199 |
| abstract_inverted_index.“should-link” | 139 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5070568027 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I28022161 |
| citation_normalized_percentile.value | 0.78139833 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |