Soil Geochemistry Toward Lithium Pegmatite Exploration: Building a Machine-Learning Predictive Algorithm via Portable X-Ray Fluorescence Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.5382/econgeo.5166
As demand for lithium (Li) increases, cheaper, more sustainable, and faster methods are needed for the identification and characterization of new Li deposits. Lithium-rich pegmatites are major sources of Li, but their exploration is often hindered by soil cover. Portable X-ray fluorescence (pXRF) can rapidly and accurately quantify soil chemistry to determine the bedrock economic potential, but unfortunately, Li is undetectable via pXRF. Herein, pXRF data and random forest models were used to predict both Li contents in soil samples and Li-rich soil parent material based on abundances of 15 predictors (K, Rb, Al, Ba, Ca, etc.). For comparison, support vector regression and neural network deep learning were also conducted. The data set consisted of 112 soil samples collected over spodumene-rich pegmatites, barren granitic pegmatites, peraluminous granite, and metamorphic host rocks from forested, glaciated northern Wisconsin and Michigan, United States. Lithium abundances were independently measured using inductively coupled plasma-optical emission spectroscopy (ICP-OES). The best Li prediction was achieved using neural networks, yielding a coefficient of determination (R2) of 0.90, a root mean square error (RMSE) of ~40 mg × kg–1, and residual prediction deviation of 3.2. The best parent material prediction model was achieved using random forest, with an overall accuracy of 0.88. Portable XRF analysis discriminates among soil samples formed on bedrock with distinct mineralogy. Using pXRF combined with appropriate machine learning models to predict the Li contents in the soil and the type of underlying bedrock could become an alternative, more efficient, and less invasive exploration method compared to traditional trenching.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.5382/econgeo.5166
- https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/doi/10.5382/econgeo.5166/7336060/5166_pierangeli_et_al_ep.pdf
- OA Status
- hybrid
- Cited By
- 1
- References
- 64
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4413924681
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4413924681Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5382/econgeo.5166Digital Object Identifier
- Title
-
Soil Geochemistry Toward Lithium Pegmatite Exploration: Building a Machine-Learning Predictive Algorithm via Portable X-Ray FluorescenceWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-01Full publication date if available
- Authors
-
Luiza Maria Pereira Pierangeli, Mona-Liza C. Sirbescu, Sérgio Henrique Godinho Silva, David C. Weindorf, Thomas R. Benson, Nilton CuriList of authors in order
- Landing page
-
https://doi.org/10.5382/econgeo.5166Publisher landing page
- PDF URL
-
https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/doi/10.5382/econgeo.5166/7336060/5166_pierangeli_et_al_ep.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/doi/10.5382/econgeo.5166/7336060/5166_pierangeli_et_al_ep.pdfDirect OA link when available
- Concepts
-
Pegmatite, Geology, Lithium (medication), Fluorescence, X-ray fluorescence, Mineralogy, Geochemistry, Optics, Endocrinology, Physics, MedicineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
64Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4413924681 |
|---|---|
| doi | https://doi.org/10.5382/econgeo.5166 |
| ids.doi | https://doi.org/10.5382/econgeo.5166 |
| ids.openalex | https://openalex.org/W4413924681 |
| fwci | 4.81974515 |
| type | article |
| title | Soil Geochemistry Toward Lithium Pegmatite Exploration: Building a Machine-Learning Predictive Algorithm via Portable X-Ray Fluorescence |
| biblio.issue | 5 |
| biblio.volume | 120 |
| biblio.last_page | 1330 |
| biblio.first_page | 1311 |
| topics[0].id | https://openalex.org/T12157 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Geochemistry and Geologic Mapping |
| topics[1].id | https://openalex.org/T10770 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9987000226974487 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2305 |
| topics[1].subfield.display_name | Environmental Engineering |
| topics[1].display_name | Soil Geostatistics and Mapping |
| topics[2].id | https://openalex.org/T12282 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9980999827384949 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2210 |
| topics[2].subfield.display_name | Mechanical Engineering |
| topics[2].display_name | Mineral Processing and Grinding |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C195845463 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9027652740478516 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q105630 |
| concepts[0].display_name | Pegmatite |
| concepts[1].id | https://openalex.org/C127313418 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7156192660331726 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[1].display_name | Geology |
| concepts[2].id | https://openalex.org/C2778541603 |
| concepts[2].level | 2 |
| concepts[2].score | 0.49483126401901245 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q152763 |
| concepts[2].display_name | Lithium (medication) |
| concepts[3].id | https://openalex.org/C91881484 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4808238744735718 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q191807 |
| concepts[3].display_name | Fluorescence |
| concepts[4].id | https://openalex.org/C162170617 |
| concepts[4].level | 3 |
| concepts[4].score | 0.42827147245407104 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q898974 |
| concepts[4].display_name | X-ray fluorescence |
| concepts[5].id | https://openalex.org/C199289684 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3637927770614624 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q83353 |
| concepts[5].display_name | Mineralogy |
| concepts[6].id | https://openalex.org/C17409809 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3325781524181366 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q161764 |
| concepts[6].display_name | Geochemistry |
| concepts[7].id | https://openalex.org/C120665830 |
| concepts[7].level | 1 |
| concepts[7].score | 0.08274596929550171 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[7].display_name | Optics |
| concepts[8].id | https://openalex.org/C134018914 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q162606 |
| concepts[8].display_name | Endocrinology |
| concepts[9].id | https://openalex.org/C121332964 |
| concepts[9].level | 0 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[9].display_name | Physics |
| concepts[10].id | https://openalex.org/C71924100 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[10].display_name | Medicine |
| keywords[0].id | https://openalex.org/keywords/pegmatite |
| keywords[0].score | 0.9027652740478516 |
| keywords[0].display_name | Pegmatite |
| keywords[1].id | https://openalex.org/keywords/geology |
| keywords[1].score | 0.7156192660331726 |
| keywords[1].display_name | Geology |
| keywords[2].id | https://openalex.org/keywords/lithium |
| keywords[2].score | 0.49483126401901245 |
| keywords[2].display_name | Lithium (medication) |
| keywords[3].id | https://openalex.org/keywords/fluorescence |
| keywords[3].score | 0.4808238744735718 |
| keywords[3].display_name | Fluorescence |
| keywords[4].id | https://openalex.org/keywords/x-ray-fluorescence |
| keywords[4].score | 0.42827147245407104 |
| keywords[4].display_name | X-ray fluorescence |
| keywords[5].id | https://openalex.org/keywords/mineralogy |
| keywords[5].score | 0.3637927770614624 |
| keywords[5].display_name | Mineralogy |
| keywords[6].id | https://openalex.org/keywords/geochemistry |
| keywords[6].score | 0.3325781524181366 |
| keywords[6].display_name | Geochemistry |
| keywords[7].id | https://openalex.org/keywords/optics |
| keywords[7].score | 0.08274596929550171 |
| keywords[7].display_name | Optics |
| language | en |
| locations[0].id | doi:10.5382/econgeo.5166 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210182989 |
| locations[0].source.issn | 0361-0128, 1554-0774 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0361-0128 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Economic Geology |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/doi/10.5382/econgeo.5166/7336060/5166_pierangeli_et_al_ep.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Economic Geology |
| locations[0].landing_page_url | https://doi.org/10.5382/econgeo.5166 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5056487863 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9218-3718 |
| authorships[0].author.display_name | Luiza Maria Pereira Pierangeli |
| authorships[0].countries | BR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1315085146 |
| authorships[0].affiliations[0].raw_affiliation_string | 1 Federal University of Lavras, Department of Soil Science, P.O. Box 3037, Lavras, Minas Gerais 37200-900, Brazil |
| authorships[0].institutions[0].id | https://openalex.org/I1315085146 |
| authorships[0].institutions[0].ror | https://ror.org/0122bmm03 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I1315085146 |
| authorships[0].institutions[0].country_code | BR |
| authorships[0].institutions[0].display_name | Universidade Federal de Lavras |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Luiza Maria Pereira Pierangeli |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | 1 Federal University of Lavras, Department of Soil Science, P.O. Box 3037, Lavras, Minas Gerais 37200-900, Brazil |
| authorships[1].author.id | https://openalex.org/A5109120711 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Mona-Liza C. Sirbescu |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1629065 |
| authorships[1].affiliations[0].raw_affiliation_string | 2 Department of Earth and Atmospheric Sciences, Central Michigan University, Mount Pleasant, Michigan 48859, USA |
| authorships[1].institutions[0].id | https://openalex.org/I1629065 |
| authorships[1].institutions[0].ror | https://ror.org/02xawj266 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I1629065 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Central Michigan University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mona-Liza C. Sirbescu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | 2 Department of Earth and Atmospheric Sciences, Central Michigan University, Mount Pleasant, Michigan 48859, USA |
| authorships[2].author.id | https://openalex.org/A5074518521 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2750-5976 |
| authorships[2].author.display_name | Sérgio Henrique Godinho Silva |
| authorships[2].countries | BR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1315085146 |
| authorships[2].affiliations[0].raw_affiliation_string | 1 Federal University of Lavras, Department of Soil Science, P.O. Box 3037, Lavras, Minas Gerais 37200-900, Brazil |
| authorships[2].institutions[0].id | https://openalex.org/I1315085146 |
| authorships[2].institutions[0].ror | https://ror.org/0122bmm03 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I1315085146 |
| authorships[2].institutions[0].country_code | BR |
| authorships[2].institutions[0].display_name | Universidade Federal de Lavras |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sérgio Henrique Godinho Silva |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | 1 Federal University of Lavras, Department of Soil Science, P.O. Box 3037, Lavras, Minas Gerais 37200-900, Brazil |
| authorships[3].author.id | https://openalex.org/A5089925843 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3814-825X |
| authorships[3].author.display_name | David C. Weindorf |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I39815113 |
| authorships[3].affiliations[0].raw_affiliation_string | 3 School of Earth, Environment, and Sustainability, Georgia Southern University, Statesboro, Georgia 30460, USA |
| authorships[3].institutions[0].id | https://openalex.org/I39815113 |
| authorships[3].institutions[0].ror | https://ror.org/04agmb972 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I39815113 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Georgia Southern University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | David C. Weindorf |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | 3 School of Earth, Environment, and Sustainability, Georgia Southern University, Statesboro, Georgia 30460, USA |
| authorships[4].author.id | https://openalex.org/A5023421097 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4132-969X |
| authorships[4].author.display_name | Thomas R. Benson |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I152304114, https://openalex.org/I78577930 |
| authorships[4].affiliations[0].raw_affiliation_string | 5 Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York 10964-1000, USA |
| authorships[4].affiliations[1].raw_affiliation_string | 4 Lithium Argentina AG, Dammstrasse 19, 6300 Zug, Switzerland |
| authorships[4].institutions[0].id | https://openalex.org/I78577930 |
| authorships[4].institutions[0].ror | https://ror.org/00hj8s172 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I78577930 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Columbia University |
| authorships[4].institutions[1].id | https://openalex.org/I152304114 |
| authorships[4].institutions[1].ror | https://ror.org/02e2tgs60 |
| authorships[4].institutions[1].type | facility |
| authorships[4].institutions[1].lineage | https://openalex.org/I152304114, https://openalex.org/I78577930 |
| authorships[4].institutions[1].country_code | US |
| authorships[4].institutions[1].display_name | Lamont-Doherty Earth Observatory |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Thomas R. Benson |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | 4 Lithium Argentina AG, Dammstrasse 19, 6300 Zug, Switzerland, 5 Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York 10964-1000, USA |
| authorships[5].author.id | https://openalex.org/A5012568647 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-2604-0866 |
| authorships[5].author.display_name | Nilton Curi |
| authorships[5].countries | BR |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I1315085146 |
| authorships[5].affiliations[0].raw_affiliation_string | 1 Federal University of Lavras, Department of Soil Science, P.O. Box 3037, Lavras, Minas Gerais 37200-900, Brazil |
| authorships[5].institutions[0].id | https://openalex.org/I1315085146 |
| authorships[5].institutions[0].ror | https://ror.org/0122bmm03 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I1315085146 |
| authorships[5].institutions[0].country_code | BR |
| authorships[5].institutions[0].display_name | Universidade Federal de Lavras |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Nilton Curi |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | 1 Federal University of Lavras, Department of Soil Science, P.O. Box 3037, Lavras, Minas Gerais 37200-900, Brazil |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/doi/10.5382/econgeo.5166/7336060/5166_pierangeli_et_al_ep.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Soil Geochemistry Toward Lithium Pegmatite Exploration: Building a Machine-Learning Predictive Algorithm via Portable X-Ray Fluorescence |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12157 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Geochemistry and Geologic Mapping |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W851014622, https://openalex.org/W4388509260, https://openalex.org/W3152667339, https://openalex.org/W2367333813, https://openalex.org/W4389167095, https://openalex.org/W2065690197, https://openalex.org/W4398782151, https://openalex.org/W1967010660, https://openalex.org/W2087825707 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5382/econgeo.5166 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210182989 |
| best_oa_location.source.issn | 0361-0128, 1554-0774 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0361-0128 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Economic Geology |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/doi/10.5382/econgeo.5166/7336060/5166_pierangeli_et_al_ep.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Economic Geology |
| best_oa_location.landing_page_url | https://doi.org/10.5382/econgeo.5166 |
| primary_location.id | doi:10.5382/econgeo.5166 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210182989 |
| primary_location.source.issn | 0361-0128, 1554-0774 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0361-0128 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Economic Geology |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://pubs.geoscienceworld.org/segweb/economicgeology/article-pdf/doi/10.5382/econgeo.5166/7336060/5166_pierangeli_et_al_ep.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Economic Geology |
| primary_location.landing_page_url | https://doi.org/10.5382/econgeo.5166 |
| publication_date | 2025-08-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4289336387, https://openalex.org/W3111129314, https://openalex.org/W2610170382, https://openalex.org/W3138542739, https://openalex.org/W2165976294, https://openalex.org/W1998053851, https://openalex.org/W4230978102, https://openalex.org/W2138973222, https://openalex.org/W2076845462, https://openalex.org/W4321375746, https://openalex.org/W2602228915, https://openalex.org/W2103999221, https://openalex.org/W3146097469, https://openalex.org/W94052953, https://openalex.org/W3198339393, https://openalex.org/W3137951894, https://openalex.org/W3203033308, https://openalex.org/W1831050183, https://openalex.org/W2164777277, https://openalex.org/W2789603996, https://openalex.org/W4318962860, https://openalex.org/W2335657501, https://openalex.org/W1536084664, https://openalex.org/W2325214818, https://openalex.org/W3038317215, https://openalex.org/W3167157040, https://openalex.org/W4389358362, https://openalex.org/W4409004035, https://openalex.org/W4210324263, https://openalex.org/W1984957490, https://openalex.org/W4283277514, https://openalex.org/W4312881442, https://openalex.org/W4385188491, https://openalex.org/W2030860739, https://openalex.org/W3217091817, https://openalex.org/W2169189930, https://openalex.org/W2092739804, https://openalex.org/W4411152878, https://openalex.org/W2009789540, https://openalex.org/W2905060367, https://openalex.org/W2969274637, https://openalex.org/W2261067204, https://openalex.org/W2293212777, https://openalex.org/W4402424979, https://openalex.org/W2770018638, https://openalex.org/W4318619700, https://openalex.org/W3100147273, https://openalex.org/W2100411277, https://openalex.org/W4205656784, https://openalex.org/W4391099338, https://openalex.org/W2947152641, https://openalex.org/W3175120962, https://openalex.org/W4200400075, https://openalex.org/W3186894947, https://openalex.org/W2490490808, https://openalex.org/W54143302, https://openalex.org/W4388660352, https://openalex.org/W4390227531, https://openalex.org/W4313855240, https://openalex.org/W3035455684, https://openalex.org/W2262611765, https://openalex.org/W3080155821, https://openalex.org/W1521320773, https://openalex.org/W1680797894 |
| referenced_works_count | 64 |
| abstract_inverted_index.a | 163, 170 |
| abstract_inverted_index.15 | 90 |
| abstract_inverted_index.As | 1 |
| abstract_inverted_index.Li | 22, 59, 76, 155, 228 |
| abstract_inverted_index.an | 199, 241 |
| abstract_inverted_index.by | 37 |
| abstract_inverted_index.in | 78, 230 |
| abstract_inverted_index.is | 34, 60 |
| abstract_inverted_index.mg | 178 |
| abstract_inverted_index.of | 20, 29, 89, 115, 165, 168, 176, 185, 202, 236 |
| abstract_inverted_index.on | 87, 212 |
| abstract_inverted_index.to | 51, 73, 225, 251 |
| abstract_inverted_index.× | 179 |
| abstract_inverted_index.(K, | 92 |
| abstract_inverted_index.112 | 116 |
| abstract_inverted_index.Al, | 94 |
| abstract_inverted_index.Ba, | 95 |
| abstract_inverted_index.Ca, | 96 |
| abstract_inverted_index.For | 98 |
| abstract_inverted_index.Li, | 30 |
| abstract_inverted_index.Rb, | 93 |
| abstract_inverted_index.The | 111, 153, 187 |
| abstract_inverted_index.XRF | 205 |
| abstract_inverted_index.and | 10, 18, 46, 67, 81, 103, 128, 137, 181, 233, 245 |
| abstract_inverted_index.are | 13, 26 |
| abstract_inverted_index.but | 31, 57 |
| abstract_inverted_index.can | 44 |
| abstract_inverted_index.for | 3, 15 |
| abstract_inverted_index.new | 21 |
| abstract_inverted_index.set | 113 |
| abstract_inverted_index.the | 16, 53, 227, 231, 234 |
| abstract_inverted_index.via | 62 |
| abstract_inverted_index.was | 157, 193 |
| abstract_inverted_index.~40 | 177 |
| abstract_inverted_index.(Li) | 5 |
| abstract_inverted_index.(R2) | 167 |
| abstract_inverted_index.3.2. | 186 |
| abstract_inverted_index.also | 109 |
| abstract_inverted_index.best | 154, 188 |
| abstract_inverted_index.both | 75 |
| abstract_inverted_index.data | 66, 112 |
| abstract_inverted_index.deep | 106 |
| abstract_inverted_index.from | 132 |
| abstract_inverted_index.host | 130 |
| abstract_inverted_index.less | 246 |
| abstract_inverted_index.mean | 172 |
| abstract_inverted_index.more | 8, 243 |
| abstract_inverted_index.over | 120 |
| abstract_inverted_index.pXRF | 65, 218 |
| abstract_inverted_index.root | 171 |
| abstract_inverted_index.soil | 38, 49, 79, 83, 117, 209, 232 |
| abstract_inverted_index.type | 235 |
| abstract_inverted_index.used | 72 |
| abstract_inverted_index.were | 71, 108, 143 |
| abstract_inverted_index.with | 198, 214, 220 |
| abstract_inverted_index.0.88. | 203 |
| abstract_inverted_index.0.90, | 169 |
| abstract_inverted_index.Using | 217 |
| abstract_inverted_index.X-ray | 41 |
| abstract_inverted_index.among | 208 |
| abstract_inverted_index.based | 86 |
| abstract_inverted_index.could | 239 |
| abstract_inverted_index.error | 174 |
| abstract_inverted_index.major | 27 |
| abstract_inverted_index.model | 192 |
| abstract_inverted_index.often | 35 |
| abstract_inverted_index.pXRF. | 63 |
| abstract_inverted_index.rocks | 131 |
| abstract_inverted_index.their | 32 |
| abstract_inverted_index.using | 146, 159, 195 |
| abstract_inverted_index.(RMSE) | 175 |
| abstract_inverted_index.(pXRF) | 43 |
| abstract_inverted_index.United | 139 |
| abstract_inverted_index.barren | 123 |
| abstract_inverted_index.become | 240 |
| abstract_inverted_index.cover. | 39 |
| abstract_inverted_index.demand | 2 |
| abstract_inverted_index.etc.). | 97 |
| abstract_inverted_index.faster | 11 |
| abstract_inverted_index.forest | 69 |
| abstract_inverted_index.formed | 211 |
| abstract_inverted_index.method | 249 |
| abstract_inverted_index.models | 70, 224 |
| abstract_inverted_index.needed | 14 |
| abstract_inverted_index.neural | 104, 160 |
| abstract_inverted_index.parent | 84, 189 |
| abstract_inverted_index.random | 68, 196 |
| abstract_inverted_index.square | 173 |
| abstract_inverted_index.vector | 101 |
| abstract_inverted_index.Herein, | 64 |
| abstract_inverted_index.Li-rich | 82 |
| abstract_inverted_index.Lithium | 141 |
| abstract_inverted_index.States. | 140 |
| abstract_inverted_index.bedrock | 54, 213, 238 |
| abstract_inverted_index.coupled | 148 |
| abstract_inverted_index.forest, | 197 |
| abstract_inverted_index.kg–1, | 180 |
| abstract_inverted_index.lithium | 4 |
| abstract_inverted_index.machine | 222 |
| abstract_inverted_index.methods | 12 |
| abstract_inverted_index.network | 105 |
| abstract_inverted_index.overall | 200 |
| abstract_inverted_index.predict | 74, 226 |
| abstract_inverted_index.rapidly | 45 |
| abstract_inverted_index.samples | 80, 118, 210 |
| abstract_inverted_index.sources | 28 |
| abstract_inverted_index.support | 100 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Portable | 40, 204 |
| abstract_inverted_index.accuracy | 201 |
| abstract_inverted_index.achieved | 158, 194 |
| abstract_inverted_index.analysis | 206 |
| abstract_inverted_index.cheaper, | 7 |
| abstract_inverted_index.combined | 219 |
| abstract_inverted_index.compared | 250 |
| abstract_inverted_index.contents | 77, 229 |
| abstract_inverted_index.distinct | 215 |
| abstract_inverted_index.economic | 55 |
| abstract_inverted_index.emission | 150 |
| abstract_inverted_index.granite, | 127 |
| abstract_inverted_index.granitic | 124 |
| abstract_inverted_index.hindered | 36 |
| abstract_inverted_index.invasive | 247 |
| abstract_inverted_index.learning | 107, 223 |
| abstract_inverted_index.material | 85, 190 |
| abstract_inverted_index.measured | 145 |
| abstract_inverted_index.northern | 135 |
| abstract_inverted_index.quantify | 48 |
| abstract_inverted_index.residual | 182 |
| abstract_inverted_index.yielding | 162 |
| abstract_inverted_index.Michigan, | 138 |
| abstract_inverted_index.Wisconsin | 136 |
| abstract_inverted_index.chemistry | 50 |
| abstract_inverted_index.collected | 119 |
| abstract_inverted_index.consisted | 114 |
| abstract_inverted_index.deposits. | 23 |
| abstract_inverted_index.determine | 52 |
| abstract_inverted_index.deviation | 184 |
| abstract_inverted_index.forested, | 133 |
| abstract_inverted_index.glaciated | 134 |
| abstract_inverted_index.networks, | 161 |
| abstract_inverted_index.(ICP-OES). | 152 |
| abstract_inverted_index.abundances | 88, 142 |
| abstract_inverted_index.accurately | 47 |
| abstract_inverted_index.conducted. | 110 |
| abstract_inverted_index.efficient, | 244 |
| abstract_inverted_index.increases, | 6 |
| abstract_inverted_index.pegmatites | 25 |
| abstract_inverted_index.potential, | 56 |
| abstract_inverted_index.prediction | 156, 183, 191 |
| abstract_inverted_index.predictors | 91 |
| abstract_inverted_index.regression | 102 |
| abstract_inverted_index.trenching. | 253 |
| abstract_inverted_index.underlying | 237 |
| abstract_inverted_index.appropriate | 221 |
| abstract_inverted_index.coefficient | 164 |
| abstract_inverted_index.comparison, | 99 |
| abstract_inverted_index.exploration | 33, 248 |
| abstract_inverted_index.inductively | 147 |
| abstract_inverted_index.metamorphic | 129 |
| abstract_inverted_index.mineralogy. | 216 |
| abstract_inverted_index.pegmatites, | 122, 125 |
| abstract_inverted_index.traditional | 252 |
| abstract_inverted_index.Lithium-rich | 24 |
| abstract_inverted_index.alternative, | 242 |
| abstract_inverted_index.fluorescence | 42 |
| abstract_inverted_index.peraluminous | 126 |
| abstract_inverted_index.spectroscopy | 151 |
| abstract_inverted_index.sustainable, | 9 |
| abstract_inverted_index.undetectable | 61 |
| abstract_inverted_index.determination | 166 |
| abstract_inverted_index.discriminates | 207 |
| abstract_inverted_index.independently | 144 |
| abstract_inverted_index.identification | 17 |
| abstract_inverted_index.plasma-optical | 149 |
| abstract_inverted_index.spodumene-rich | 121 |
| abstract_inverted_index.unfortunately, | 58 |
| abstract_inverted_index.characterization | 19 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.95703679 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |