Solving Electromagnetic Scattering Problems with Tens of Billions of Unknowns Using GPU Accelerated Massively Parallel MLFMA Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.36227/techrxiv.17292470.v1
In this paper, a massively parallel approach of the multilevel fast multipole algorithm (PMLFMA) on graphics processing unit (GPU) heterogeneous platform, noted as GPU-PMLFMA, is presented for solving extremely large electromagnetic scattering problems involving tens of billions of unknowns, In this approach, the flexible and efficient ternary partitioning scheme is employed at first to partition the MLFMA octree among message passing interface (MPI) processes. Then the computationally intensive parts of the PMLFMA on each MPI process, matrix filling, aggregation and disaggregation, etc., are accelerated by using the GPU. Different parallelization strategies in coincidence with the ternary parallel MLFMA approach are designed for GPU to ensures a high computational throughput. Special memory usage strategy is designed to improve the computational efficiency and benefit data re-using. The CPU/GPU asynchronous computing pattern is designed with the OpenMP and CUDA respectively for accelerating the CPU and GPU execution parts and computation time overlapped. GPU architecture-based optimization strategies are implemented to further improve the computational efficiency. Numerical results demonstrate that the proposed GPU-PMLFMA can achieve over 3 times speed-up, compared with the 8-threaded conventional PMLFMA. Solutions of scattering by electrically large and complicated objects with about 24000 wavelengths and over 41.8 billion unknowns, are presented.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.36227/techrxiv.17292470.v1
- https://www.techrxiv.org/articles/preprint/Solving_Electromagnetic_Scattering_Problems_with_Tens_of_Billions_of_Unknowns_Using_GPU_Accelerated_Massively_Parallel_MLFMA/17292470/1/files/34211576.pdf
- OA Status
- gold
- References
- 30
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4281720080
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4281720080Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.36227/techrxiv.17292470.v1Digital Object Identifier
- Title
-
Solving Electromagnetic Scattering Problems with Tens of Billions of Unknowns Using GPU Accelerated Massively Parallel MLFMAWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-05-26Full publication date if available
- Authors
-
Wei-Jia He, Zeng Yang, Xiao‐Wei Huang, Wu Wang, Ming‐Lin Yang, Xin‐Qing ShengList of authors in order
- Landing page
-
https://doi.org/10.36227/techrxiv.17292470.v1Publisher landing page
- PDF URL
-
https://www.techrxiv.org/articles/preprint/Solving_Electromagnetic_Scattering_Problems_with_Tens_of_Billions_of_Unknowns_Using_GPU_Accelerated_Massively_Parallel_MLFMA/17292470/1/files/34211576.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.techrxiv.org/articles/preprint/Solving_Electromagnetic_Scattering_Problems_with_Tens_of_Billions_of_Unknowns_Using_GPU_Accelerated_Massively_Parallel_MLFMA/17292470/1/files/34211576.pdfDirect OA link when available
- Concepts
-
Computer science, Parallel computing, CUDA, Massively parallel, Computational science, Graphics processing unit, Octree, Speedup, AlgorithmTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
30Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4281720080 |
|---|---|
| doi | https://doi.org/10.36227/techrxiv.17292470.v1 |
| ids.doi | https://doi.org/10.36227/techrxiv.17292470.v1 |
| ids.openalex | https://openalex.org/W4281720080 |
| fwci | |
| type | preprint |
| title | Solving Electromagnetic Scattering Problems with Tens of Billions of Unknowns Using GPU Accelerated Massively Parallel MLFMA |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10739 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3107 |
| topics[0].subfield.display_name | Atomic and Molecular Physics, and Optics |
| topics[0].display_name | Electromagnetic Scattering and Analysis |
| topics[1].id | https://openalex.org/T11263 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9991999864578247 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Electromagnetic Simulation and Numerical Methods |
| topics[2].id | https://openalex.org/T11383 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9980000257492065 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2202 |
| topics[2].subfield.display_name | Aerospace Engineering |
| topics[2].display_name | Advanced Antenna and Metasurface Technologies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8257010579109192 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C173608175 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7430556416511536 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q232661 |
| concepts[1].display_name | Parallel computing |
| concepts[2].id | https://openalex.org/C2778119891 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7428939342498779 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q477690 |
| concepts[2].display_name | CUDA |
| concepts[3].id | https://openalex.org/C190475519 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6522182822227478 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q544384 |
| concepts[3].display_name | Massively parallel |
| concepts[4].id | https://openalex.org/C459310 |
| concepts[4].level | 1 |
| concepts[4].score | 0.6172199845314026 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q117801 |
| concepts[4].display_name | Computational science |
| concepts[5].id | https://openalex.org/C2779851693 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5975555777549744 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q183484 |
| concepts[5].display_name | Graphics processing unit |
| concepts[6].id | https://openalex.org/C141297171 |
| concepts[6].level | 2 |
| concepts[6].score | 0.45502668619155884 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1143237 |
| concepts[6].display_name | Octree |
| concepts[7].id | https://openalex.org/C68339613 |
| concepts[7].level | 2 |
| concepts[7].score | 0.41366544365882874 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1549489 |
| concepts[7].display_name | Speedup |
| concepts[8].id | https://openalex.org/C11413529 |
| concepts[8].level | 1 |
| concepts[8].score | 0.16791903972625732 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[8].display_name | Algorithm |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8257010579109192 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/parallel-computing |
| keywords[1].score | 0.7430556416511536 |
| keywords[1].display_name | Parallel computing |
| keywords[2].id | https://openalex.org/keywords/cuda |
| keywords[2].score | 0.7428939342498779 |
| keywords[2].display_name | CUDA |
| keywords[3].id | https://openalex.org/keywords/massively-parallel |
| keywords[3].score | 0.6522182822227478 |
| keywords[3].display_name | Massively parallel |
| keywords[4].id | https://openalex.org/keywords/computational-science |
| keywords[4].score | 0.6172199845314026 |
| keywords[4].display_name | Computational science |
| keywords[5].id | https://openalex.org/keywords/graphics-processing-unit |
| keywords[5].score | 0.5975555777549744 |
| keywords[5].display_name | Graphics processing unit |
| keywords[6].id | https://openalex.org/keywords/octree |
| keywords[6].score | 0.45502668619155884 |
| keywords[6].display_name | Octree |
| keywords[7].id | https://openalex.org/keywords/speedup |
| keywords[7].score | 0.41366544365882874 |
| keywords[7].display_name | Speedup |
| keywords[8].id | https://openalex.org/keywords/algorithm |
| keywords[8].score | 0.16791903972625732 |
| keywords[8].display_name | Algorithm |
| language | en |
| locations[0].id | doi:10.36227/techrxiv.17292470.v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by-nc-sa |
| locations[0].pdf_url | https://www.techrxiv.org/articles/preprint/Solving_Electromagnetic_Scattering_Problems_with_Tens_of_Billions_of_Unknowns_Using_GPU_Accelerated_Massively_Parallel_MLFMA/17292470/1/files/34211576.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-sa |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.36227/techrxiv.17292470.v1 |
| locations[1].id | pmh:oai:figshare.com:article/17292470 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400572 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | OPAL (Open@LaTrobe) (La Trobe University) |
| locations[1].source.host_organization | https://openalex.org/I196829312 |
| locations[1].source.host_organization_name | La Trobe University |
| locations[1].source.host_organization_lineage | https://openalex.org/I196829312 |
| locations[1].license | cc-by-nc-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Text |
| locations[1].license_id | https://openalex.org/licenses/cc-by-nc-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://figshare.com/articles/preprint/Solving_Electromagnetic_Scattering_Problems_with_Tens_of_Billions_of_Unknowns_Using_GPU_Accelerated_Massively_Parallel_MLFMA/17292470 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5114047843 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4614-6545 |
| authorships[0].author.display_name | Wei-Jia He |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I125839683 |
| authorships[0].affiliations[0].raw_affiliation_string | Institute of Applied Electromagnetic, School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China. |
| authorships[0].institutions[0].id | https://openalex.org/I125839683 |
| authorships[0].institutions[0].ror | https://ror.org/01skt4w74 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I125839683, https://openalex.org/I890469752 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Beijing Institute of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wei-Jia He |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Institute of Applied Electromagnetic, School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China. |
| authorships[1].author.id | https://openalex.org/A5019697013 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7076-2073 |
| authorships[1].author.display_name | Zeng Yang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I125839683 |
| authorships[1].affiliations[0].raw_affiliation_string | Institute of Applied Electromagnetic, School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China. |
| authorships[1].institutions[0].id | https://openalex.org/I125839683 |
| authorships[1].institutions[0].ror | https://ror.org/01skt4w74 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I125839683, https://openalex.org/I890469752 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Beijing Institute of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zeng Yang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Institute of Applied Electromagnetic, School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China. |
| authorships[2].author.id | https://openalex.org/A5017586734 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2248-7350 |
| authorships[2].author.display_name | Xiao‐Wei Huang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I125839683 |
| authorships[2].affiliations[0].raw_affiliation_string | Institute of Applied Electromagnetic, School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China. |
| authorships[2].institutions[0].id | https://openalex.org/I125839683 |
| authorships[2].institutions[0].ror | https://ror.org/01skt4w74 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I125839683, https://openalex.org/I890469752 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Beijing Institute of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xiao-Wei Huang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Institute of Applied Electromagnetic, School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China. |
| authorships[3].author.id | https://openalex.org/A5100413342 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6216-5324 |
| authorships[3].author.display_name | Wu Wang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210108629 |
| authorships[3].affiliations[0].raw_affiliation_string | Computer Network Information Center, Chinese Academy of Sciences, Beijing 100083, China. |
| authorships[3].institutions[0].id | https://openalex.org/I19820366 |
| authorships[3].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[3].institutions[0].type | government |
| authorships[3].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[3].institutions[1].id | https://openalex.org/I4210108629 |
| authorships[3].institutions[1].ror | https://ror.org/01s0wyf50 |
| authorships[3].institutions[1].type | facility |
| authorships[3].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210108629 |
| authorships[3].institutions[1].country_code | CN |
| authorships[3].institutions[1].display_name | Computer Network Information Center |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Wu Wang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Computer Network Information Center, Chinese Academy of Sciences, Beijing 100083, China. |
| authorships[4].author.id | https://openalex.org/A5006409914 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-0638-9526 |
| authorships[4].author.display_name | Ming‐Lin Yang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I125839683 |
| authorships[4].affiliations[0].raw_affiliation_string | Institute of Applied Electromagnetic, School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China. |
| authorships[4].institutions[0].id | https://openalex.org/I125839683 |
| authorships[4].institutions[0].ror | https://ror.org/01skt4w74 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I125839683, https://openalex.org/I890469752 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Beijing Institute of Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Minglin Yang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Institute of Applied Electromagnetic, School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China. |
| authorships[5].author.id | https://openalex.org/A5055423271 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-8136-3705 |
| authorships[5].author.display_name | Xin‐Qing Sheng |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I125839683 |
| authorships[5].affiliations[0].raw_affiliation_string | Institute of Applied Electromagnetic, School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China. |
| authorships[5].institutions[0].id | https://openalex.org/I125839683 |
| authorships[5].institutions[0].ror | https://ror.org/01skt4w74 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I125839683, https://openalex.org/I890469752 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Beijing Institute of Technology |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Xin-Qing Sheng |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Institute of Applied Electromagnetic, School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China. |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.techrxiv.org/articles/preprint/Solving_Electromagnetic_Scattering_Problems_with_Tens_of_Billions_of_Unknowns_Using_GPU_Accelerated_Massively_Parallel_MLFMA/17292470/1/files/34211576.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Solving Electromagnetic Scattering Problems with Tens of Billions of Unknowns Using GPU Accelerated Massively Parallel MLFMA |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10739 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3107 |
| primary_topic.subfield.display_name | Atomic and Molecular Physics, and Optics |
| primary_topic.display_name | Electromagnetic Scattering and Analysis |
| related_works | https://openalex.org/W2983282793, https://openalex.org/W1973046741, https://openalex.org/W2056543843, https://openalex.org/W2119534391, https://openalex.org/W2023770367, https://openalex.org/W2503137108, https://openalex.org/W1966576946, https://openalex.org/W2020279179, https://openalex.org/W2765743988, https://openalex.org/W2062253548 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.36227/techrxiv.17292470.v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by-nc-sa |
| best_oa_location.pdf_url | https://www.techrxiv.org/articles/preprint/Solving_Electromagnetic_Scattering_Problems_with_Tens_of_Billions_of_Unknowns_Using_GPU_Accelerated_Massively_Parallel_MLFMA/17292470/1/files/34211576.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.36227/techrxiv.17292470.v1 |
| primary_location.id | doi:10.36227/techrxiv.17292470.v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by-nc-sa |
| primary_location.pdf_url | https://www.techrxiv.org/articles/preprint/Solving_Electromagnetic_Scattering_Problems_with_Tens_of_Billions_of_Unknowns_Using_GPU_Accelerated_Massively_Parallel_MLFMA/17292470/1/files/34211576.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.36227/techrxiv.17292470.v1 |
| publication_date | 2022-05-26 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2128556617, https://openalex.org/W2163068304, https://openalex.org/W2154089789, https://openalex.org/W2019789345, https://openalex.org/W2171479497, https://openalex.org/W2099789761, https://openalex.org/W1542002907, https://openalex.org/W2132755674, https://openalex.org/W2125322382, https://openalex.org/W6662748727, https://openalex.org/W1903718817, https://openalex.org/W2091958452, https://openalex.org/W2109027746, https://openalex.org/W2016067822, https://openalex.org/W2158173533, https://openalex.org/W2896321576, https://openalex.org/W1591776253, https://openalex.org/W2133397108, https://openalex.org/W2136222595, https://openalex.org/W2054357898, https://openalex.org/W2962358977, https://openalex.org/W2795117369, https://openalex.org/W4226054303, https://openalex.org/W6678318891, https://openalex.org/W2167243874, https://openalex.org/W3201079539, https://openalex.org/W2564229740, https://openalex.org/W2122834723, https://openalex.org/W2963117067, https://openalex.org/W2048145697 |
| referenced_works_count | 30 |
| abstract_inverted_index.3 | 171 |
| abstract_inverted_index.a | 3, 105 |
| abstract_inverted_index.In | 0, 39 |
| abstract_inverted_index.as | 22 |
| abstract_inverted_index.at | 51 |
| abstract_inverted_index.by | 84, 183 |
| abstract_inverted_index.in | 91 |
| abstract_inverted_index.is | 24, 49, 113, 129 |
| abstract_inverted_index.of | 7, 35, 37, 69, 181 |
| abstract_inverted_index.on | 14, 72 |
| abstract_inverted_index.to | 53, 103, 115, 155 |
| abstract_inverted_index.CPU | 140 |
| abstract_inverted_index.GPU | 102, 142, 149 |
| abstract_inverted_index.MPI | 74 |
| abstract_inverted_index.The | 124 |
| abstract_inverted_index.and | 44, 79, 120, 134, 141, 145, 186, 193 |
| abstract_inverted_index.are | 82, 99, 153, 198 |
| abstract_inverted_index.can | 168 |
| abstract_inverted_index.for | 26, 101, 137 |
| abstract_inverted_index.the | 8, 42, 55, 65, 70, 86, 94, 117, 132, 139, 158, 165, 176 |
| abstract_inverted_index.41.8 | 195 |
| abstract_inverted_index.CUDA | 135 |
| abstract_inverted_index.GPU. | 87 |
| abstract_inverted_index.Then | 64 |
| abstract_inverted_index.data | 122 |
| abstract_inverted_index.each | 73 |
| abstract_inverted_index.fast | 10 |
| abstract_inverted_index.high | 106 |
| abstract_inverted_index.over | 170, 194 |
| abstract_inverted_index.tens | 34 |
| abstract_inverted_index.that | 164 |
| abstract_inverted_index.this | 1, 40 |
| abstract_inverted_index.time | 147 |
| abstract_inverted_index.unit | 17 |
| abstract_inverted_index.with | 93, 131, 175, 189 |
| abstract_inverted_index.(GPU) | 18 |
| abstract_inverted_index.(MPI) | 62 |
| abstract_inverted_index.24000 | 191 |
| abstract_inverted_index.MLFMA | 56, 97 |
| abstract_inverted_index.about | 190 |
| abstract_inverted_index.among | 58 |
| abstract_inverted_index.etc., | 81 |
| abstract_inverted_index.first | 52 |
| abstract_inverted_index.large | 29, 185 |
| abstract_inverted_index.noted | 21 |
| abstract_inverted_index.parts | 68, 144 |
| abstract_inverted_index.times | 172 |
| abstract_inverted_index.usage | 111 |
| abstract_inverted_index.using | 85 |
| abstract_inverted_index.OpenMP | 133 |
| abstract_inverted_index.PMLFMA | 71 |
| abstract_inverted_index.matrix | 76 |
| abstract_inverted_index.memory | 110 |
| abstract_inverted_index.octree | 57 |
| abstract_inverted_index.paper, | 2 |
| abstract_inverted_index.scheme | 48 |
| abstract_inverted_index.CPU/GPU | 125 |
| abstract_inverted_index.PMLFMA. | 179 |
| abstract_inverted_index.Special | 109 |
| abstract_inverted_index.achieve | 169 |
| abstract_inverted_index.benefit | 121 |
| abstract_inverted_index.billion | 196 |
| abstract_inverted_index.ensures | 104 |
| abstract_inverted_index.further | 156 |
| abstract_inverted_index.improve | 116, 157 |
| abstract_inverted_index.message | 59 |
| abstract_inverted_index.objects | 188 |
| abstract_inverted_index.passing | 60 |
| abstract_inverted_index.pattern | 128 |
| abstract_inverted_index.results | 162 |
| abstract_inverted_index.solving | 27 |
| abstract_inverted_index.ternary | 46, 95 |
| abstract_inverted_index.(PMLFMA) | 13 |
| abstract_inverted_index.approach | 6, 98 |
| abstract_inverted_index.billions | 36 |
| abstract_inverted_index.compared | 174 |
| abstract_inverted_index.designed | 100, 114, 130 |
| abstract_inverted_index.employed | 50 |
| abstract_inverted_index.filling, | 77 |
| abstract_inverted_index.flexible | 43 |
| abstract_inverted_index.graphics | 15 |
| abstract_inverted_index.parallel | 5, 96 |
| abstract_inverted_index.problems | 32 |
| abstract_inverted_index.process, | 75 |
| abstract_inverted_index.proposed | 166 |
| abstract_inverted_index.strategy | 112 |
| abstract_inverted_index.Different | 88 |
| abstract_inverted_index.Numerical | 161 |
| abstract_inverted_index.Solutions | 180 |
| abstract_inverted_index.algorithm | 12 |
| abstract_inverted_index.approach, | 41 |
| abstract_inverted_index.computing | 127 |
| abstract_inverted_index.efficient | 45 |
| abstract_inverted_index.execution | 143 |
| abstract_inverted_index.extremely | 28 |
| abstract_inverted_index.intensive | 67 |
| abstract_inverted_index.interface | 61 |
| abstract_inverted_index.involving | 33 |
| abstract_inverted_index.massively | 4 |
| abstract_inverted_index.multipole | 11 |
| abstract_inverted_index.partition | 54 |
| abstract_inverted_index.platform, | 20 |
| abstract_inverted_index.presented | 25 |
| abstract_inverted_index.re-using. | 123 |
| abstract_inverted_index.speed-up, | 173 |
| abstract_inverted_index.unknowns, | 38, 197 |
| abstract_inverted_index.8-threaded | 177 |
| abstract_inverted_index.GPU-PMLFMA | 167 |
| abstract_inverted_index.efficiency | 119 |
| abstract_inverted_index.multilevel | 9 |
| abstract_inverted_index.presented. | 199 |
| abstract_inverted_index.processes. | 63 |
| abstract_inverted_index.processing | 16 |
| abstract_inverted_index.scattering | 31, 182 |
| abstract_inverted_index.strategies | 90, 152 |
| abstract_inverted_index.GPU-PMLFMA, | 23 |
| abstract_inverted_index.accelerated | 83 |
| abstract_inverted_index.aggregation | 78 |
| abstract_inverted_index.coincidence | 92 |
| abstract_inverted_index.complicated | 187 |
| abstract_inverted_index.computation | 146 |
| abstract_inverted_index.demonstrate | 163 |
| abstract_inverted_index.efficiency. | 160 |
| abstract_inverted_index.implemented | 154 |
| abstract_inverted_index.overlapped. | 148 |
| abstract_inverted_index.throughput. | 108 |
| abstract_inverted_index.wavelengths | 192 |
| abstract_inverted_index.accelerating | 138 |
| abstract_inverted_index.asynchronous | 126 |
| abstract_inverted_index.conventional | 178 |
| abstract_inverted_index.electrically | 184 |
| abstract_inverted_index.optimization | 151 |
| abstract_inverted_index.partitioning | 47 |
| abstract_inverted_index.respectively | 136 |
| abstract_inverted_index.computational | 107, 118, 159 |
| abstract_inverted_index.heterogeneous | 19 |
| abstract_inverted_index.computationally | 66 |
| abstract_inverted_index.disaggregation, | 80 |
| abstract_inverted_index.electromagnetic | 30 |
| abstract_inverted_index.parallelization | 89 |
| abstract_inverted_index.architecture-based | 150 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.5699999928474426 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.06544896 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |