Solving Fokker-Planck equation using deep learning Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1063/1.5132840
The probability density function of stochastic differential equations is governed by the Fokker-Planck (FP) equation. A novel machine learning method is developed to solve the general FP equations based on deep neural networks. The proposed algorithm does not require any interpolation and coordinate transformation, which is different from the traditional numerical methods. The main novelty of this paper is that penalty factors are introduced to overcome the local optimization for the deep learning approach, and the corresponding setting rules are given. Meanwhile, we consider a normalization condition as a supervision condition to effectively avoid that the trial solution is zero. Several numerical examples are presented to illustrate performances of the proposed algorithm, including one-, two-, and three-dimensional systems. All the results suggest that the deep learning is quite feasible and effective to calculate the FP equation. Furthermore, influences of the number of hidden layers, the penalty factors, and the optimization algorithm are discussed in detail. These results indicate that the performances of the machine learning technique can be improved through constructing the neural networks appropriately.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1063/1.5132840
- OA Status
- green
- Cited By
- 135
- References
- 43
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3002873949
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3002873949Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1063/1.5132840Digital Object Identifier
- Title
-
Solving Fokker-Planck equation using deep learningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-01-01Full publication date if available
- Authors
-
Yong Xu, Hao Zhang, Yongge Li, Kuang Zhou, Qi Liu, Jürgen KurthsList of authors in order
- Landing page
-
https://doi.org/10.1063/1.5132840Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1910.10503Direct OA link when available
- Concepts
-
Fokker–Planck equation, Statistical physics, Physics, Artificial intelligence, Computer science, Mathematics, Partial differential equation, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
135Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 35, 2024: 30, 2023: 22, 2022: 30, 2021: 12Per-year citation counts (last 5 years)
- References (count)
-
43Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3002873949 |
|---|---|
| doi | https://doi.org/10.1063/1.5132840 |
| ids.doi | https://doi.org/10.1063/1.5132840 |
| ids.mag | 3002873949 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/32013470 |
| ids.openalex | https://openalex.org/W3002873949 |
| fwci | 10.2801684 |
| type | article |
| title | Solving Fokker-Planck equation using deep learning |
| awards[0].id | https://openalex.org/G5394238105 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 11772255 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 1 |
| biblio.volume | 30 |
| biblio.last_page | 013133 |
| biblio.first_page | 013133 |
| topics[0].id | https://openalex.org/T12814 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9934999942779541 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Gaussian Processes and Bayesian Inference |
| topics[1].id | https://openalex.org/T12261 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9919999837875366 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3109 |
| topics[1].subfield.display_name | Statistical and Nonlinear Physics |
| topics[1].display_name | Statistical Mechanics and Entropy |
| topics[2].id | https://openalex.org/T11206 |
| topics[2].field.id | https://openalex.org/fields/31 |
| topics[2].field.display_name | Physics and Astronomy |
| topics[2].score | 0.9839000105857849 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3109 |
| topics[2].subfield.display_name | Statistical and Nonlinear Physics |
| topics[2].display_name | Model Reduction and Neural Networks |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C69123182 |
| concepts[0].level | 3 |
| concepts[0].score | 0.9176615476608276 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q891766 |
| concepts[0].display_name | Fokker–Planck equation |
| concepts[1].id | https://openalex.org/C121864883 |
| concepts[1].level | 1 |
| concepts[1].score | 0.43550315499305725 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q677916 |
| concepts[1].display_name | Statistical physics |
| concepts[2].id | https://openalex.org/C121332964 |
| concepts[2].level | 0 |
| concepts[2].score | 0.3489059507846832 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[2].display_name | Physics |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.33414754271507263 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.3276931047439575 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C33923547 |
| concepts[5].level | 0 |
| concepts[5].score | 0.27020105719566345 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[5].display_name | Mathematics |
| concepts[6].id | https://openalex.org/C93779851 |
| concepts[6].level | 2 |
| concepts[6].score | 0.19264909625053406 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q271977 |
| concepts[6].display_name | Partial differential equation |
| concepts[7].id | https://openalex.org/C134306372 |
| concepts[7].level | 1 |
| concepts[7].score | 0.1696934998035431 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[7].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/fokker–planck-equation |
| keywords[0].score | 0.9176615476608276 |
| keywords[0].display_name | Fokker–Planck equation |
| keywords[1].id | https://openalex.org/keywords/statistical-physics |
| keywords[1].score | 0.43550315499305725 |
| keywords[1].display_name | Statistical physics |
| keywords[2].id | https://openalex.org/keywords/physics |
| keywords[2].score | 0.3489059507846832 |
| keywords[2].display_name | Physics |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.33414754271507263 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.3276931047439575 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/mathematics |
| keywords[5].score | 0.27020105719566345 |
| keywords[5].display_name | Mathematics |
| keywords[6].id | https://openalex.org/keywords/partial-differential-equation |
| keywords[6].score | 0.19264909625053406 |
| keywords[6].display_name | Partial differential equation |
| keywords[7].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[7].score | 0.1696934998035431 |
| keywords[7].display_name | Mathematical analysis |
| language | en |
| locations[0].id | doi:10.1063/1.5132840 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S187806540 |
| locations[0].source.issn | 1054-1500, 1089-7682, 1527-2443 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1054-1500 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Chaos An Interdisciplinary Journal of Nonlinear Science |
| locations[0].source.host_organization | https://openalex.org/P4310320257 |
| locations[0].source.host_organization_name | American Institute of Physics |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320257 |
| locations[0].source.host_organization_lineage_names | American Institute of Physics |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Chaos: An Interdisciplinary Journal of Nonlinear Science |
| locations[0].landing_page_url | https://doi.org/10.1063/1.5132840 |
| locations[1].id | pmid:32013470 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Chaos (Woodbury, N.Y.) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/32013470 |
| locations[2].id | pmh:oai:arXiv.org:1910.10503 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | https://arxiv.org/pdf/1910.10503 |
| locations[2].version | submittedVersion |
| locations[2].raw_type | text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | http://arxiv.org/abs/1910.10503 |
| indexed_in | arxiv, crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5062310230 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8407-4650 |
| authorships[0].author.display_name | Yong Xu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I17145004 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Applied Mathematics, Northwestern Polytechnical University 1 , Xi’an 710072, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I17145004 |
| authorships[0].affiliations[1].raw_affiliation_string | MIIT Key Laboratory of Dynamics and Control of Complex Systems, Northwestern Polytechnical University 2 , Xi’an 710072, China |
| authorships[0].institutions[0].id | https://openalex.org/I17145004 |
| authorships[0].institutions[0].ror | https://ror.org/01y0j0j86 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I17145004 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Northwestern Polytechnical University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yong Xu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Applied Mathematics, Northwestern Polytechnical University 1 , Xi’an 710072, China, MIIT Key Laboratory of Dynamics and Control of Complex Systems, Northwestern Polytechnical University 2 , Xi’an 710072, China |
| authorships[1].author.id | https://openalex.org/A5100676128 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5273-8136 |
| authorships[1].author.display_name | Hao Zhang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I17145004 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Applied Mathematics, Northwestern Polytechnical University 1 , Xi’an 710072, China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I17145004 |
| authorships[1].affiliations[1].raw_affiliation_string | Department of Engineering Mechanics, Northwestern Polytechnical University 3 , Xi’an 710072, China |
| authorships[1].institutions[0].id | https://openalex.org/I17145004 |
| authorships[1].institutions[0].ror | https://ror.org/01y0j0j86 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I17145004 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Northwestern Polytechnical University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hao Zhang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Applied Mathematics, Northwestern Polytechnical University 1 , Xi’an 710072, China, Department of Engineering Mechanics, Northwestern Polytechnical University 3 , Xi’an 710072, China |
| authorships[2].author.id | https://openalex.org/A5082042786 |
| authorships[2].author.orcid | https://orcid.org/0009-0002-8328-0185 |
| authorships[2].author.display_name | Yongge Li |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I47720641 |
| authorships[2].affiliations[0].raw_affiliation_string | Center for Mathematical Sciences and School of Mathematics and Statistics, Huazhong University of Science and Technology 4 , Wuhan 430074, China |
| authorships[2].institutions[0].id | https://openalex.org/I47720641 |
| authorships[2].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yongge Li |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Center for Mathematical Sciences and School of Mathematics and Statistics, Huazhong University of Science and Technology 4 , Wuhan 430074, China |
| authorships[3].author.id | https://openalex.org/A5047500564 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7278-3652 |
| authorships[3].author.display_name | Kuang Zhou |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I17145004 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Applied Mathematics, Northwestern Polytechnical University 1 , Xi’an 710072, China |
| authorships[3].institutions[0].id | https://openalex.org/I17145004 |
| authorships[3].institutions[0].ror | https://ror.org/01y0j0j86 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I17145004 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Northwestern Polytechnical University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Kuang Zhou |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Applied Mathematics, Northwestern Polytechnical University 1 , Xi’an 710072, China |
| authorships[4].author.id | https://openalex.org/A5101590020 |
| authorships[4].author.orcid | https://orcid.org/0009-0002-5706-3355 |
| authorships[4].author.display_name | Qi Liu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I17145004 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Applied Mathematics, Northwestern Polytechnical University 1 , Xi’an 710072, China |
| authorships[4].institutions[0].id | https://openalex.org/I17145004 |
| authorships[4].institutions[0].ror | https://ror.org/01y0j0j86 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I17145004 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Northwestern Polytechnical University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Qi Liu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Applied Mathematics, Northwestern Polytechnical University 1 , Xi’an 710072, China |
| authorships[5].author.id | https://openalex.org/A5085207296 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-5926-4276 |
| authorships[5].author.display_name | Jürgen Kurths |
| authorships[5].countries | DE |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I39343248 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Physics, Humboldt University Berlin 6 , Berlin 12489, Germany |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I60200437 |
| authorships[5].affiliations[1].raw_affiliation_string | Potsdam Institute for Climate Impact Research 5 , Potsdam 14412, Germany |
| authorships[5].institutions[0].id | https://openalex.org/I39343248 |
| authorships[5].institutions[0].ror | https://ror.org/01hcx6992 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I39343248 |
| authorships[5].institutions[0].country_code | DE |
| authorships[5].institutions[0].display_name | Humboldt-Universität zu Berlin |
| authorships[5].institutions[1].id | https://openalex.org/I60200437 |
| authorships[5].institutions[1].ror | https://ror.org/03e8s1d88 |
| authorships[5].institutions[1].type | facility |
| authorships[5].institutions[1].lineage | https://openalex.org/I315704651, https://openalex.org/I60200437 |
| authorships[5].institutions[1].country_code | DE |
| authorships[5].institutions[1].display_name | Potsdam Institute for Climate Impact Research |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Jürgen Kurths |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Physics, Humboldt University Berlin 6 , Berlin 12489, Germany, Potsdam Institute for Climate Impact Research 5 , Potsdam 14412, Germany |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1910.10503 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Solving Fokker-Planck equation using deep learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12814 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9934999942779541 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Gaussian Processes and Bayesian Inference |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2935759653, https://openalex.org/W3105167352, https://openalex.org/W54078636, https://openalex.org/W2954470139, https://openalex.org/W1501425562, https://openalex.org/W2902782467, https://openalex.org/W1989512732 |
| cited_by_count | 135 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 35 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 30 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 22 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 30 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 12 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 6 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:arXiv.org:1910.10503 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1910.10503 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1910.10503 |
| primary_location.id | doi:10.1063/1.5132840 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S187806540 |
| primary_location.source.issn | 1054-1500, 1089-7682, 1527-2443 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1054-1500 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Chaos An Interdisciplinary Journal of Nonlinear Science |
| primary_location.source.host_organization | https://openalex.org/P4310320257 |
| primary_location.source.host_organization_name | American Institute of Physics |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320257 |
| primary_location.source.host_organization_lineage_names | American Institute of Physics |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Chaos: An Interdisciplinary Journal of Nonlinear Science |
| primary_location.landing_page_url | https://doi.org/10.1063/1.5132840 |
| publication_date | 2020-01-01 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2253922750, https://openalex.org/W2545457231, https://openalex.org/W2013427815, https://openalex.org/W2791923660, https://openalex.org/W2034566631, https://openalex.org/W1972463090, https://openalex.org/W2054519725, https://openalex.org/W2545515621, https://openalex.org/W2550846622, https://openalex.org/W1999327554, https://openalex.org/W2042065662, https://openalex.org/W2168456473, https://openalex.org/W2058418165, https://openalex.org/W277894173, https://openalex.org/W1996757067, https://openalex.org/W2015524128, https://openalex.org/W2945114464, https://openalex.org/W1978377009, https://openalex.org/W2607021672, https://openalex.org/W2028722909, https://openalex.org/W2327712336, https://openalex.org/W2172174819, https://openalex.org/W2471218770, https://openalex.org/W2061942071, https://openalex.org/W2103496339, https://openalex.org/W2158985775, https://openalex.org/W2022910713, https://openalex.org/W2121198253, https://openalex.org/W2020561998, https://openalex.org/W2132473313, https://openalex.org/W2770250658, https://openalex.org/W2899283552, https://openalex.org/W2803629276, https://openalex.org/W2749028154, https://openalex.org/W2005126631, https://openalex.org/W2969988445, https://openalex.org/W2977390304, https://openalex.org/W2033755632, https://openalex.org/W4394649613, https://openalex.org/W3100552411, https://openalex.org/W2772097715, https://openalex.org/W3101260193, https://openalex.org/W4242989628 |
| referenced_works_count | 43 |
| abstract_inverted_index.A | 15 |
| abstract_inverted_index.a | 84, 88 |
| abstract_inverted_index.FP | 26, 134 |
| abstract_inverted_index.as | 87 |
| abstract_inverted_index.be | 167 |
| abstract_inverted_index.by | 10 |
| abstract_inverted_index.in | 153 |
| abstract_inverted_index.is | 8, 20, 45, 58, 98, 126 |
| abstract_inverted_index.of | 4, 55, 108, 138, 141, 161 |
| abstract_inverted_index.on | 29 |
| abstract_inverted_index.to | 22, 64, 91, 105, 131 |
| abstract_inverted_index.we | 82 |
| abstract_inverted_index.All | 118 |
| abstract_inverted_index.The | 0, 33, 52 |
| abstract_inverted_index.and | 41, 74, 115, 129, 147 |
| abstract_inverted_index.any | 39 |
| abstract_inverted_index.are | 62, 79, 103, 151 |
| abstract_inverted_index.can | 166 |
| abstract_inverted_index.for | 69 |
| abstract_inverted_index.not | 37 |
| abstract_inverted_index.the | 11, 24, 48, 66, 70, 75, 95, 109, 119, 123, 133, 139, 144, 148, 159, 162, 171 |
| abstract_inverted_index.(FP) | 13 |
| abstract_inverted_index.deep | 30, 71, 124 |
| abstract_inverted_index.does | 36 |
| abstract_inverted_index.from | 47 |
| abstract_inverted_index.main | 53 |
| abstract_inverted_index.that | 59, 94, 122, 158 |
| abstract_inverted_index.this | 56 |
| abstract_inverted_index.These | 155 |
| abstract_inverted_index.avoid | 93 |
| abstract_inverted_index.based | 28 |
| abstract_inverted_index.local | 67 |
| abstract_inverted_index.novel | 16 |
| abstract_inverted_index.one-, | 113 |
| abstract_inverted_index.paper | 57 |
| abstract_inverted_index.quite | 127 |
| abstract_inverted_index.rules | 78 |
| abstract_inverted_index.solve | 23 |
| abstract_inverted_index.trial | 96 |
| abstract_inverted_index.two-, | 114 |
| abstract_inverted_index.which | 44 |
| abstract_inverted_index.zero. | 99 |
| abstract_inverted_index.given. | 80 |
| abstract_inverted_index.hidden | 142 |
| abstract_inverted_index.method | 19 |
| abstract_inverted_index.neural | 31, 172 |
| abstract_inverted_index.number | 140 |
| abstract_inverted_index.Several | 100 |
| abstract_inverted_index.density | 2 |
| abstract_inverted_index.detail. | 154 |
| abstract_inverted_index.factors | 61 |
| abstract_inverted_index.general | 25 |
| abstract_inverted_index.layers, | 143 |
| abstract_inverted_index.machine | 17, 163 |
| abstract_inverted_index.novelty | 54 |
| abstract_inverted_index.penalty | 60, 145 |
| abstract_inverted_index.require | 38 |
| abstract_inverted_index.results | 120, 156 |
| abstract_inverted_index.setting | 77 |
| abstract_inverted_index.suggest | 121 |
| abstract_inverted_index.through | 169 |
| abstract_inverted_index.consider | 83 |
| abstract_inverted_index.examples | 102 |
| abstract_inverted_index.factors, | 146 |
| abstract_inverted_index.feasible | 128 |
| abstract_inverted_index.function | 3 |
| abstract_inverted_index.governed | 9 |
| abstract_inverted_index.improved | 168 |
| abstract_inverted_index.indicate | 157 |
| abstract_inverted_index.learning | 18, 72, 125, 164 |
| abstract_inverted_index.methods. | 51 |
| abstract_inverted_index.networks | 173 |
| abstract_inverted_index.overcome | 65 |
| abstract_inverted_index.proposed | 34, 110 |
| abstract_inverted_index.solution | 97 |
| abstract_inverted_index.systems. | 117 |
| abstract_inverted_index.algorithm | 35, 150 |
| abstract_inverted_index.approach, | 73 |
| abstract_inverted_index.calculate | 132 |
| abstract_inverted_index.condition | 86, 90 |
| abstract_inverted_index.developed | 21 |
| abstract_inverted_index.different | 46 |
| abstract_inverted_index.discussed | 152 |
| abstract_inverted_index.effective | 130 |
| abstract_inverted_index.equation. | 14, 135 |
| abstract_inverted_index.equations | 7, 27 |
| abstract_inverted_index.including | 112 |
| abstract_inverted_index.networks. | 32 |
| abstract_inverted_index.numerical | 50, 101 |
| abstract_inverted_index.presented | 104 |
| abstract_inverted_index.technique | 165 |
| abstract_inverted_index.Meanwhile, | 81 |
| abstract_inverted_index.algorithm, | 111 |
| abstract_inverted_index.coordinate | 42 |
| abstract_inverted_index.illustrate | 106 |
| abstract_inverted_index.influences | 137 |
| abstract_inverted_index.introduced | 63 |
| abstract_inverted_index.stochastic | 5 |
| abstract_inverted_index.effectively | 92 |
| abstract_inverted_index.probability | 1 |
| abstract_inverted_index.supervision | 89 |
| abstract_inverted_index.traditional | 49 |
| abstract_inverted_index.Furthermore, | 136 |
| abstract_inverted_index.constructing | 170 |
| abstract_inverted_index.differential | 6 |
| abstract_inverted_index.optimization | 68, 149 |
| abstract_inverted_index.performances | 107, 160 |
| abstract_inverted_index.Fokker-Planck | 12 |
| abstract_inverted_index.corresponding | 76 |
| abstract_inverted_index.interpolation | 40 |
| abstract_inverted_index.normalization | 85 |
| abstract_inverted_index.appropriately. | 174 |
| abstract_inverted_index.transformation, | 43 |
| abstract_inverted_index.three-dimensional | 116 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 98 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.9841246 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |