Solving the Inverse Problem of Electrocardiography for Cardiac Digital Twins: A Survey Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2406.11445
Cardiac digital twins (CDTs) are personalized virtual representations used to understand complex cardiac mechanisms. A critical component of CDT development is solving the ECG inverse problem, which enables the reconstruction of cardiac sources and the estimation of patient-specific electrophysiology (EP) parameters from surface ECG data. Despite challenges from complex cardiac anatomy, noisy ECG data, and the ill-posed nature of the inverse problem, recent advances in computational methods have greatly improved the accuracy and efficiency of ECG inverse inference, strengthening the fidelity of CDTs. This paper aims to provide a comprehensive review of the methods of solving ECG inverse problem, the validation strategies, the clinical applications, and future perspectives. For the methodologies, we broadly classify state-of-the-art approaches into two categories: deterministic and probabilistic methods, including both conventional and deep learning-based techniques. Integrating physics laws with deep learning models holds promise, but challenges such as capturing dynamic electrophysiology accurately, accessing accurate domain knowledge, and quantifying prediction uncertainty persist. Integrating models into clinical workflows while ensuring interpretability and usability for healthcare professionals is essential. Overcoming these challenges will drive further research in CDTs.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2406.11445
- https://arxiv.org/pdf/2406.11445
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4399795161
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4399795161Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2406.11445Digital Object Identifier
- Title
-
Solving the Inverse Problem of Electrocardiography for Cardiac Digital Twins: A SurveyWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-06-17Full publication date if available
- Authors
-
Lei Li, Julià Camps, Blanca Rodríguez, Vicente GrauList of authors in order
- Landing page
-
https://arxiv.org/abs/2406.11445Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2406.11445Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2406.11445Direct OA link when available
- Concepts
-
Electrocardiography, Inverse problem, Inverse, Computer science, Cardiology, Medicine, Mathematics, Mathematical analysis, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4399795161 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2406.11445 |
| ids.doi | https://doi.org/10.48550/arxiv.2406.11445 |
| ids.openalex | https://openalex.org/W4399795161 |
| fwci | |
| type | preprint |
| title | Solving the Inverse Problem of Electrocardiography for Cardiac Digital Twins: A Survey |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10300 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.8848000168800354 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2713 |
| topics[0].subfield.display_name | Epidemiology |
| topics[0].display_name | Congenital Heart Disease Studies |
| topics[1].id | https://openalex.org/T11196 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.8083000183105469 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Non-Invasive Vital Sign Monitoring |
| topics[2].id | https://openalex.org/T10372 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.7853000164031982 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Cardiac Imaging and Diagnostics |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2780040984 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6223674416542053 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q79785 |
| concepts[0].display_name | Electrocardiography |
| concepts[1].id | https://openalex.org/C135252773 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5282299518585205 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1567213 |
| concepts[1].display_name | Inverse problem |
| concepts[2].id | https://openalex.org/C207467116 |
| concepts[2].level | 2 |
| concepts[2].score | 0.46581506729125977 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q4385666 |
| concepts[2].display_name | Inverse |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.3838738203048706 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C164705383 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3026331663131714 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q10379 |
| concepts[4].display_name | Cardiology |
| concepts[5].id | https://openalex.org/C71924100 |
| concepts[5].level | 0 |
| concepts[5].score | 0.2955320179462433 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[5].display_name | Medicine |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.2632191777229309 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| concepts[7].id | https://openalex.org/C134306372 |
| concepts[7].level | 1 |
| concepts[7].score | 0.1201980710029602 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[7].display_name | Mathematical analysis |
| concepts[8].id | https://openalex.org/C2524010 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[8].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/electrocardiography |
| keywords[0].score | 0.6223674416542053 |
| keywords[0].display_name | Electrocardiography |
| keywords[1].id | https://openalex.org/keywords/inverse-problem |
| keywords[1].score | 0.5282299518585205 |
| keywords[1].display_name | Inverse problem |
| keywords[2].id | https://openalex.org/keywords/inverse |
| keywords[2].score | 0.46581506729125977 |
| keywords[2].display_name | Inverse |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.3838738203048706 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/cardiology |
| keywords[4].score | 0.3026331663131714 |
| keywords[4].display_name | Cardiology |
| keywords[5].id | https://openalex.org/keywords/medicine |
| keywords[5].score | 0.2955320179462433 |
| keywords[5].display_name | Medicine |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.2632191777229309 |
| keywords[6].display_name | Mathematics |
| keywords[7].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[7].score | 0.1201980710029602 |
| keywords[7].display_name | Mathematical analysis |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2406.11445 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by-nc-sa |
| locations[0].pdf_url | https://arxiv.org/pdf/2406.11445 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-sa |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2406.11445 |
| locations[1].id | doi:10.48550/arxiv.2406.11445 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2406.11445 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100440388 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1281-6472 |
| authorships[0].author.display_name | Lei Li |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Li, Lei |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5076288422 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6491-2565 |
| authorships[1].author.display_name | Julià Camps |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Camps, Julia |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5067810825 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6361-3339 |
| authorships[2].author.display_name | Blanca Rodríguez |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Rodriguez, Blanca |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5023353591 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8139-3480 |
| authorships[3].author.display_name | Vicente Grau |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Grau, Vicente |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2406.11445 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Solving the Inverse Problem of Electrocardiography for Cardiac Digital Twins: A Survey |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10300 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.8848000168800354 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2713 |
| primary_topic.subfield.display_name | Epidemiology |
| primary_topic.display_name | Congenital Heart Disease Studies |
| related_works | https://openalex.org/W3183948672, https://openalex.org/W3173606202, https://openalex.org/W3110381201, https://openalex.org/W2948807893, https://openalex.org/W2778153218, https://openalex.org/W2758277628, https://openalex.org/W2748952813, https://openalex.org/W1531601525, https://openalex.org/W2331917905, https://openalex.org/W3155039083 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2406.11445 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by-nc-sa |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2406.11445 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2406.11445 |
| primary_location.id | pmh:oai:arXiv.org:2406.11445 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by-nc-sa |
| primary_location.pdf_url | https://arxiv.org/pdf/2406.11445 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2406.11445 |
| publication_date | 2024-06-17 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 14 |
| abstract_inverted_index.a | 88 |
| abstract_inverted_index.as | 142 |
| abstract_inverted_index.in | 64, 178 |
| abstract_inverted_index.is | 20, 169 |
| abstract_inverted_index.of | 17, 30, 36, 58, 74, 81, 91, 94 |
| abstract_inverted_index.to | 9, 86 |
| abstract_inverted_index.we | 111 |
| abstract_inverted_index.CDT | 18 |
| abstract_inverted_index.ECG | 23, 43, 52, 75, 96 |
| abstract_inverted_index.For | 108 |
| abstract_inverted_index.and | 33, 54, 72, 105, 120, 126, 151, 164 |
| abstract_inverted_index.are | 4 |
| abstract_inverted_index.but | 139 |
| abstract_inverted_index.for | 166 |
| abstract_inverted_index.the | 22, 28, 34, 55, 59, 70, 79, 92, 99, 102, 109 |
| abstract_inverted_index.two | 117 |
| abstract_inverted_index.(EP) | 39 |
| abstract_inverted_index.This | 83 |
| abstract_inverted_index.aims | 85 |
| abstract_inverted_index.both | 124 |
| abstract_inverted_index.deep | 127, 134 |
| abstract_inverted_index.from | 41, 47 |
| abstract_inverted_index.have | 67 |
| abstract_inverted_index.into | 116, 158 |
| abstract_inverted_index.laws | 132 |
| abstract_inverted_index.such | 141 |
| abstract_inverted_index.used | 8 |
| abstract_inverted_index.will | 174 |
| abstract_inverted_index.with | 133 |
| abstract_inverted_index.CDTs. | 82, 179 |
| abstract_inverted_index.data, | 53 |
| abstract_inverted_index.data. | 44 |
| abstract_inverted_index.drive | 175 |
| abstract_inverted_index.holds | 137 |
| abstract_inverted_index.noisy | 51 |
| abstract_inverted_index.paper | 84 |
| abstract_inverted_index.these | 172 |
| abstract_inverted_index.twins | 2 |
| abstract_inverted_index.which | 26 |
| abstract_inverted_index.while | 161 |
| abstract_inverted_index.(CDTs) | 3 |
| abstract_inverted_index.domain | 149 |
| abstract_inverted_index.future | 106 |
| abstract_inverted_index.models | 136, 157 |
| abstract_inverted_index.nature | 57 |
| abstract_inverted_index.recent | 62 |
| abstract_inverted_index.review | 90 |
| abstract_inverted_index.Cardiac | 0 |
| abstract_inverted_index.Despite | 45 |
| abstract_inverted_index.broadly | 112 |
| abstract_inverted_index.cardiac | 12, 31, 49 |
| abstract_inverted_index.complex | 11, 48 |
| abstract_inverted_index.digital | 1 |
| abstract_inverted_index.dynamic | 144 |
| abstract_inverted_index.enables | 27 |
| abstract_inverted_index.further | 176 |
| abstract_inverted_index.greatly | 68 |
| abstract_inverted_index.inverse | 24, 60, 76, 97 |
| abstract_inverted_index.methods | 66, 93 |
| abstract_inverted_index.physics | 131 |
| abstract_inverted_index.provide | 87 |
| abstract_inverted_index.solving | 21, 95 |
| abstract_inverted_index.sources | 32 |
| abstract_inverted_index.surface | 42 |
| abstract_inverted_index.virtual | 6 |
| abstract_inverted_index.accuracy | 71 |
| abstract_inverted_index.accurate | 148 |
| abstract_inverted_index.advances | 63 |
| abstract_inverted_index.anatomy, | 50 |
| abstract_inverted_index.classify | 113 |
| abstract_inverted_index.clinical | 103, 159 |
| abstract_inverted_index.critical | 15 |
| abstract_inverted_index.ensuring | 162 |
| abstract_inverted_index.fidelity | 80 |
| abstract_inverted_index.improved | 69 |
| abstract_inverted_index.learning | 135 |
| abstract_inverted_index.methods, | 122 |
| abstract_inverted_index.persist. | 155 |
| abstract_inverted_index.problem, | 25, 61, 98 |
| abstract_inverted_index.promise, | 138 |
| abstract_inverted_index.research | 177 |
| abstract_inverted_index.accessing | 147 |
| abstract_inverted_index.capturing | 143 |
| abstract_inverted_index.component | 16 |
| abstract_inverted_index.ill-posed | 56 |
| abstract_inverted_index.including | 123 |
| abstract_inverted_index.usability | 165 |
| abstract_inverted_index.workflows | 160 |
| abstract_inverted_index.Overcoming | 171 |
| abstract_inverted_index.approaches | 115 |
| abstract_inverted_index.challenges | 46, 140, 173 |
| abstract_inverted_index.efficiency | 73 |
| abstract_inverted_index.essential. | 170 |
| abstract_inverted_index.estimation | 35 |
| abstract_inverted_index.healthcare | 167 |
| abstract_inverted_index.inference, | 77 |
| abstract_inverted_index.knowledge, | 150 |
| abstract_inverted_index.parameters | 40 |
| abstract_inverted_index.prediction | 153 |
| abstract_inverted_index.understand | 10 |
| abstract_inverted_index.validation | 100 |
| abstract_inverted_index.Integrating | 130, 156 |
| abstract_inverted_index.accurately, | 146 |
| abstract_inverted_index.categories: | 118 |
| abstract_inverted_index.development | 19 |
| abstract_inverted_index.mechanisms. | 13 |
| abstract_inverted_index.quantifying | 152 |
| abstract_inverted_index.strategies, | 101 |
| abstract_inverted_index.techniques. | 129 |
| abstract_inverted_index.uncertainty | 154 |
| abstract_inverted_index.conventional | 125 |
| abstract_inverted_index.personalized | 5 |
| abstract_inverted_index.applications, | 104 |
| abstract_inverted_index.comprehensive | 89 |
| abstract_inverted_index.computational | 65 |
| abstract_inverted_index.deterministic | 119 |
| abstract_inverted_index.perspectives. | 107 |
| abstract_inverted_index.probabilistic | 121 |
| abstract_inverted_index.professionals | 168 |
| abstract_inverted_index.strengthening | 78 |
| abstract_inverted_index.learning-based | 128 |
| abstract_inverted_index.methodologies, | 110 |
| abstract_inverted_index.reconstruction | 29 |
| abstract_inverted_index.representations | 7 |
| abstract_inverted_index.interpretability | 163 |
| abstract_inverted_index.patient-specific | 37 |
| abstract_inverted_index.state-of-the-art | 114 |
| abstract_inverted_index.electrophysiology | 38, 145 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |