Solving variability: Accurately extracting feature components from ballistocardiograms Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1177/20552076241277746
Objective A ballistocardiogram (BCG) is a vibration signal generated by the ejection of the blood in each cardiac cycle. The BCG has significant variability in amplitude, temporal aspects, and the deficiency of waveform components, attributed to individual differences, instantaneous heart rate, and the posture of the person being measured. This variability may make methods of extracting J-waves, the most distinct components of BCG less generalizable so that the J-waves could not be precisely localized, and further analysis is difficult. This study is dedicated to solving the variability of BCG to achieve accurate feature extraction. Methods Inspired by the generation mechanism of the BCG, we proposed an original method based on a profile of second-order derivative of BCG waveform (2ndD-P) to capture the nature of vibration and solve the variability, thereby accurately localizing the components especially when the J-wave is not prominent. Results In this study, 51 recordings of resting state and 11 recordings of high-heart-rate from 24 participants were used to validate the algorithm. Each recording lasts about 3 min. For resting state data, the sensitivity and positive predictivity of proposed method are: 98.29% and 98.64%, respectively. For high-heart-rate data, the proposed method achieved a performance comparable to those of low-heart-rate: 97.14% and 99.01% for sensitivity and positive predictivity, respectively. Conclusion Our proposed method can detect the peaks of the J-wave more accurately than conventional extraction methods, under the presence of different types of variability. Higher performance was achieved for BCG with non-prominent J-waves, in both low- and high-heart-rate cases.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1177/20552076241277746
- OA Status
- gold
- Cited By
- 2
- References
- 44
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4402336139
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4402336139Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1177/20552076241277746Digital Object Identifier
- Title
-
Solving variability: Accurately extracting feature components from ballistocardiogramsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
T. Yang, Haihang Yuan, Junqi Yang, Zhongchao Zhou, Masayuki Abe, Yoshitake Nakayama, Shao Ying Huang, Wenwei YuList of authors in order
- Landing page
-
https://doi.org/10.1177/20552076241277746Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1177/20552076241277746Direct OA link when available
- Concepts
-
Feature (linguistics), Computer science, Pattern recognition (psychology), Artificial intelligence, Linguistics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- References (count)
-
44Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4402336139 |
|---|---|
| doi | https://doi.org/10.1177/20552076241277746 |
| ids.doi | https://doi.org/10.1177/20552076241277746 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39247094 |
| ids.openalex | https://openalex.org/W4402336139 |
| fwci | 0.73505193 |
| type | article |
| title | Solving variability: Accurately extracting feature components from ballistocardiograms |
| biblio.issue | |
| biblio.volume | 10 |
| biblio.last_page | 20552076241277746 |
| biblio.first_page | 20552076241277746 |
| topics[0].id | https://openalex.org/T11196 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2204 |
| topics[0].subfield.display_name | Biomedical Engineering |
| topics[0].display_name | Non-Invasive Vital Sign Monitoring |
| topics[1].id | https://openalex.org/T10745 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.998199999332428 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2705 |
| topics[1].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[1].display_name | Heart Rate Variability and Autonomic Control |
| topics[2].id | https://openalex.org/T12205 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9976000189781189 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Time Series Analysis and Forecasting |
| is_xpac | False |
| apc_list.value | 1500 |
| apc_list.currency | USD |
| apc_list.value_usd | 1500 |
| apc_paid.value | 1500 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1500 |
| concepts[0].id | https://openalex.org/C2776401178 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6212013959884644 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[0].display_name | Feature (linguistics) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.47503095865249634 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C153180895 |
| concepts[2].level | 2 |
| concepts[2].score | 0.43955376744270325 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[2].display_name | Pattern recognition (psychology) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4268868565559387 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C41895202 |
| concepts[4].level | 1 |
| concepts[4].score | 0.07007446885108948 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[4].display_name | Linguistics |
| concepts[5].id | https://openalex.org/C138885662 |
| concepts[5].level | 0 |
| concepts[5].score | 0.06983110308647156 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[5].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/feature |
| keywords[0].score | 0.6212013959884644 |
| keywords[0].display_name | Feature (linguistics) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.47503095865249634 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/pattern-recognition |
| keywords[2].score | 0.43955376744270325 |
| keywords[2].display_name | Pattern recognition (psychology) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.4268868565559387 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/linguistics |
| keywords[4].score | 0.07007446885108948 |
| keywords[4].display_name | Linguistics |
| keywords[5].id | https://openalex.org/keywords/philosophy |
| keywords[5].score | 0.06983110308647156 |
| keywords[5].display_name | Philosophy |
| language | en |
| locations[0].id | doi:10.1177/20552076241277746 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210188408 |
| locations[0].source.issn | 2055-2076 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2055-2076 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Digital Health |
| locations[0].source.host_organization | https://openalex.org/P4310320017 |
| locations[0].source.host_organization_name | SAGE Publishing |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320017 |
| locations[0].source.host_organization_lineage_names | SAGE Publishing |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | DIGITAL HEALTH |
| locations[0].landing_page_url | https://doi.org/10.1177/20552076241277746 |
| locations[1].id | pmid:39247094 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Digital health |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39247094 |
| locations[2].id | pmh:oai:doaj.org/article:01055606d2814251aaa1b2d5cd93d5a9 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Digital Health, Vol 10 (2024) |
| locations[2].landing_page_url | https://doaj.org/article/01055606d2814251aaa1b2d5cd93d5a9 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:11378244 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Digit Health |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11378244 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5042363251 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4996-1924 |
| authorships[0].author.display_name | T. Yang |
| authorships[0].countries | JP |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I159385669 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Medical Engineering, Chiba University, Chiba City, Chiba Prefecture, Japan |
| authorships[0].institutions[0].id | https://openalex.org/I159385669 |
| authorships[0].institutions[0].ror | https://ror.org/01hjzeq58 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I159385669 |
| authorships[0].institutions[0].country_code | JP |
| authorships[0].institutions[0].display_name | Chiba University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Tianyi Yang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Medical Engineering, Chiba University, Chiba City, Chiba Prefecture, Japan |
| authorships[1].author.id | https://openalex.org/A5002504089 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6839-9754 |
| authorships[1].author.display_name | Haihang Yuan |
| authorships[1].countries | JP |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I159385669 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Medical Engineering, Chiba University, Chiba City, Chiba Prefecture, Japan |
| authorships[1].institutions[0].id | https://openalex.org/I159385669 |
| authorships[1].institutions[0].ror | https://ror.org/01hjzeq58 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I159385669 |
| authorships[1].institutions[0].country_code | JP |
| authorships[1].institutions[0].display_name | Chiba University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Haihang Yuan |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Medical Engineering, Chiba University, Chiba City, Chiba Prefecture, Japan |
| authorships[2].author.id | https://openalex.org/A5073324706 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9407-4531 |
| authorships[2].author.display_name | Junqi Yang |
| authorships[2].countries | JP |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I159385669 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Medical Engineering, Chiba University, Chiba City, Chiba Prefecture, Japan |
| authorships[2].institutions[0].id | https://openalex.org/I159385669 |
| authorships[2].institutions[0].ror | https://ror.org/01hjzeq58 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I159385669 |
| authorships[2].institutions[0].country_code | JP |
| authorships[2].institutions[0].display_name | Chiba University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Junqi Yang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Medical Engineering, Chiba University, Chiba City, Chiba Prefecture, Japan |
| authorships[3].author.id | https://openalex.org/A5028268987 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8799-7362 |
| authorships[3].author.display_name | Zhongchao Zhou |
| authorships[3].countries | JP |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I159385669 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Medical Engineering, Chiba University, Chiba City, Chiba Prefecture, Japan |
| authorships[3].institutions[0].id | https://openalex.org/I159385669 |
| authorships[3].institutions[0].ror | https://ror.org/01hjzeq58 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I159385669 |
| authorships[3].institutions[0].country_code | JP |
| authorships[3].institutions[0].display_name | Chiba University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhongchao Zhou |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Medical Engineering, Chiba University, Chiba City, Chiba Prefecture, Japan |
| authorships[4].author.id | https://openalex.org/A5091698608 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5619-3911 |
| authorships[4].author.display_name | Masayuki Abe |
| authorships[4].affiliations[0].raw_affiliation_string | Nanayume Co. Ltd, Chiba City, Chiba Prefecture, Japan |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Masayuki Abe |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Nanayume Co. Ltd, Chiba City, Chiba Prefecture, Japan |
| authorships[5].author.id | https://openalex.org/A5046467919 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-2348-8021 |
| authorships[5].author.display_name | Yoshitake Nakayama |
| authorships[5].countries | JP |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I159385669 |
| authorships[5].affiliations[0].raw_affiliation_string | Center for Preventive Medical Sciences, Chiba University, Chiba City, Chiba Prefecture, Japan |
| authorships[5].institutions[0].id | https://openalex.org/I159385669 |
| authorships[5].institutions[0].ror | https://ror.org/01hjzeq58 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I159385669 |
| authorships[5].institutions[0].country_code | JP |
| authorships[5].institutions[0].display_name | Chiba University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Yoshitake Nakayama |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Center for Preventive Medical Sciences, Chiba University, Chiba City, Chiba Prefecture, Japan |
| authorships[6].author.id | https://openalex.org/A5038352899 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-3775-8205 |
| authorships[6].author.display_name | Shao Ying Huang |
| authorships[6].countries | SG |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I152815399 |
| authorships[6].affiliations[0].raw_affiliation_string | Engineering Product Development, Singapore University of Technology and Design, Singapore, Singapore |
| authorships[6].institutions[0].id | https://openalex.org/I152815399 |
| authorships[6].institutions[0].ror | https://ror.org/05j6fvn87 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I152815399 |
| authorships[6].institutions[0].country_code | SG |
| authorships[6].institutions[0].display_name | Singapore University of Technology and Design |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Shao Ying Huang |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Engineering Product Development, Singapore University of Technology and Design, Singapore, Singapore |
| authorships[7].author.id | https://openalex.org/A5042273602 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-1277-863X |
| authorships[7].author.display_name | Wenwei Yu |
| authorships[7].countries | JP |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I159385669 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Medical Engineering, Chiba University, Chiba City, Chiba Prefecture, Japan |
| authorships[7].affiliations[1].institution_ids | https://openalex.org/I159385669 |
| authorships[7].affiliations[1].raw_affiliation_string | Center for Frontier Medical Engineering, Chiba University, Chiba City, Chiba Prefecture, Japan |
| authorships[7].institutions[0].id | https://openalex.org/I159385669 |
| authorships[7].institutions[0].ror | https://ror.org/01hjzeq58 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I159385669 |
| authorships[7].institutions[0].country_code | JP |
| authorships[7].institutions[0].display_name | Chiba University |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Wenwei Yu |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Center for Frontier Medical Engineering, Chiba University, Chiba City, Chiba Prefecture, Japan, Department of Medical Engineering, Chiba University, Chiba City, Chiba Prefecture, Japan |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1177/20552076241277746 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Solving variability: Accurately extracting feature components from ballistocardiograms |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11196 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2204 |
| primary_topic.subfield.display_name | Biomedical Engineering |
| primary_topic.display_name | Non-Invasive Vital Sign Monitoring |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2033914206, https://openalex.org/W2042327336, https://openalex.org/W4386159726 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1177/20552076241277746 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210188408 |
| best_oa_location.source.issn | 2055-2076 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2055-2076 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Digital Health |
| best_oa_location.source.host_organization | https://openalex.org/P4310320017 |
| best_oa_location.source.host_organization_name | SAGE Publishing |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320017 |
| best_oa_location.source.host_organization_lineage_names | SAGE Publishing |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | DIGITAL HEALTH |
| best_oa_location.landing_page_url | https://doi.org/10.1177/20552076241277746 |
| primary_location.id | doi:10.1177/20552076241277746 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210188408 |
| primary_location.source.issn | 2055-2076 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2055-2076 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Digital Health |
| primary_location.source.host_organization | https://openalex.org/P4310320017 |
| primary_location.source.host_organization_name | SAGE Publishing |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320017 |
| primary_location.source.host_organization_lineage_names | SAGE Publishing |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | DIGITAL HEALTH |
| primary_location.landing_page_url | https://doi.org/10.1177/20552076241277746 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2145669403, https://openalex.org/W1977380781, https://openalex.org/W4313500037, https://openalex.org/W4316658421, https://openalex.org/W4362578077, https://openalex.org/W2148325642, https://openalex.org/W3112600834, https://openalex.org/W4386797034, https://openalex.org/W2884446700, https://openalex.org/W4385986875, https://openalex.org/W2103117625, https://openalex.org/W2922908302, https://openalex.org/W4220767242, https://openalex.org/W3201743587, https://openalex.org/W2743012649, https://openalex.org/W4322741488, https://openalex.org/W3121855612, https://openalex.org/W2094328327, https://openalex.org/W2992342621, https://openalex.org/W4214602270, https://openalex.org/W2519059642, https://openalex.org/W4240592325, https://openalex.org/W1996005698, https://openalex.org/W4307570923, https://openalex.org/W2984901899, https://openalex.org/W2109606373, https://openalex.org/W2161694566, https://openalex.org/W2091921805, https://openalex.org/W2942044788, https://openalex.org/W2136293280, https://openalex.org/W2053924421, https://openalex.org/W2026699230, https://openalex.org/W4220722768, https://openalex.org/W4213209790, https://openalex.org/W2310782429, https://openalex.org/W4394990860, https://openalex.org/W2222961240, https://openalex.org/W4234309918, https://openalex.org/W4205836412, https://openalex.org/W2400785141, https://openalex.org/W4253506168, https://openalex.org/W4220789554, https://openalex.org/W4226254487, https://openalex.org/W2293079238 |
| referenced_works_count | 44 |
| abstract_inverted_index.3 | 168 |
| abstract_inverted_index.A | 1 |
| abstract_inverted_index.a | 5, 110, 194 |
| abstract_inverted_index.11 | 151 |
| abstract_inverted_index.24 | 156 |
| abstract_inverted_index.51 | 145 |
| abstract_inverted_index.In | 142 |
| abstract_inverted_index.an | 105 |
| abstract_inverted_index.be | 71 |
| abstract_inverted_index.by | 9, 96 |
| abstract_inverted_index.in | 15, 24, 244 |
| abstract_inverted_index.is | 4, 77, 81, 138 |
| abstract_inverted_index.of | 12, 31, 44, 54, 61, 87, 100, 112, 115, 123, 147, 153, 179, 199, 218, 230, 233 |
| abstract_inverted_index.on | 109 |
| abstract_inverted_index.so | 65 |
| abstract_inverted_index.to | 35, 83, 89, 119, 160, 197 |
| abstract_inverted_index.we | 103 |
| abstract_inverted_index.BCG | 20, 62, 88, 116, 240 |
| abstract_inverted_index.For | 170, 187 |
| abstract_inverted_index.Our | 211 |
| abstract_inverted_index.The | 19 |
| abstract_inverted_index.and | 28, 41, 74, 125, 150, 176, 184, 202, 206, 247 |
| abstract_inverted_index.can | 214 |
| abstract_inverted_index.for | 204, 239 |
| abstract_inverted_index.has | 21 |
| abstract_inverted_index.may | 51 |
| abstract_inverted_index.not | 70, 139 |
| abstract_inverted_index.the | 10, 13, 29, 42, 45, 57, 67, 85, 97, 101, 121, 127, 132, 136, 162, 174, 190, 216, 219, 228 |
| abstract_inverted_index.was | 237 |
| abstract_inverted_index.BCG, | 102 |
| abstract_inverted_index.Each | 164 |
| abstract_inverted_index.This | 49, 79 |
| abstract_inverted_index.are: | 182 |
| abstract_inverted_index.both | 245 |
| abstract_inverted_index.each | 16 |
| abstract_inverted_index.from | 155 |
| abstract_inverted_index.less | 63 |
| abstract_inverted_index.low- | 246 |
| abstract_inverted_index.make | 52 |
| abstract_inverted_index.min. | 169 |
| abstract_inverted_index.more | 221 |
| abstract_inverted_index.most | 58 |
| abstract_inverted_index.than | 223 |
| abstract_inverted_index.that | 66 |
| abstract_inverted_index.this | 143 |
| abstract_inverted_index.used | 159 |
| abstract_inverted_index.were | 158 |
| abstract_inverted_index.when | 135 |
| abstract_inverted_index.with | 241 |
| abstract_inverted_index.(BCG) | 3 |
| abstract_inverted_index.about | 167 |
| abstract_inverted_index.based | 108 |
| abstract_inverted_index.being | 47 |
| abstract_inverted_index.blood | 14 |
| abstract_inverted_index.could | 69 |
| abstract_inverted_index.data, | 173, 189 |
| abstract_inverted_index.heart | 39 |
| abstract_inverted_index.lasts | 166 |
| abstract_inverted_index.peaks | 217 |
| abstract_inverted_index.rate, | 40 |
| abstract_inverted_index.solve | 126 |
| abstract_inverted_index.state | 149, 172 |
| abstract_inverted_index.study | 80 |
| abstract_inverted_index.those | 198 |
| abstract_inverted_index.types | 232 |
| abstract_inverted_index.under | 227 |
| abstract_inverted_index.97.14% | 201 |
| abstract_inverted_index.98.29% | 183 |
| abstract_inverted_index.99.01% | 203 |
| abstract_inverted_index.Higher | 235 |
| abstract_inverted_index.J-wave | 137, 220 |
| abstract_inverted_index.cases. | 249 |
| abstract_inverted_index.cycle. | 18 |
| abstract_inverted_index.detect | 215 |
| abstract_inverted_index.method | 107, 181, 192, 213 |
| abstract_inverted_index.nature | 122 |
| abstract_inverted_index.person | 46 |
| abstract_inverted_index.signal | 7 |
| abstract_inverted_index.study, | 144 |
| abstract_inverted_index.98.64%, | 185 |
| abstract_inverted_index.J-waves | 68 |
| abstract_inverted_index.Methods | 94 |
| abstract_inverted_index.Results | 141 |
| abstract_inverted_index.achieve | 90 |
| abstract_inverted_index.capture | 120 |
| abstract_inverted_index.cardiac | 17 |
| abstract_inverted_index.feature | 92 |
| abstract_inverted_index.further | 75 |
| abstract_inverted_index.methods | 53 |
| abstract_inverted_index.posture | 43 |
| abstract_inverted_index.profile | 111 |
| abstract_inverted_index.resting | 148, 171 |
| abstract_inverted_index.solving | 84 |
| abstract_inverted_index.thereby | 129 |
| abstract_inverted_index.(2ndD-P) | 118 |
| abstract_inverted_index.Inspired | 95 |
| abstract_inverted_index.J-waves, | 56, 243 |
| abstract_inverted_index.accurate | 91 |
| abstract_inverted_index.achieved | 193, 238 |
| abstract_inverted_index.analysis | 76 |
| abstract_inverted_index.aspects, | 27 |
| abstract_inverted_index.distinct | 59 |
| abstract_inverted_index.ejection | 11 |
| abstract_inverted_index.methods, | 226 |
| abstract_inverted_index.original | 106 |
| abstract_inverted_index.positive | 177, 207 |
| abstract_inverted_index.presence | 229 |
| abstract_inverted_index.proposed | 104, 180, 191, 212 |
| abstract_inverted_index.temporal | 26 |
| abstract_inverted_index.validate | 161 |
| abstract_inverted_index.waveform | 32, 117 |
| abstract_inverted_index.Objective | 0 |
| abstract_inverted_index.dedicated | 82 |
| abstract_inverted_index.different | 231 |
| abstract_inverted_index.generated | 8 |
| abstract_inverted_index.measured. | 48 |
| abstract_inverted_index.mechanism | 99 |
| abstract_inverted_index.precisely | 72 |
| abstract_inverted_index.recording | 165 |
| abstract_inverted_index.vibration | 6, 124 |
| abstract_inverted_index.Conclusion | 210 |
| abstract_inverted_index.accurately | 130, 222 |
| abstract_inverted_index.algorithm. | 163 |
| abstract_inverted_index.amplitude, | 25 |
| abstract_inverted_index.attributed | 34 |
| abstract_inverted_index.comparable | 196 |
| abstract_inverted_index.components | 60, 133 |
| abstract_inverted_index.deficiency | 30 |
| abstract_inverted_index.derivative | 114 |
| abstract_inverted_index.difficult. | 78 |
| abstract_inverted_index.especially | 134 |
| abstract_inverted_index.extracting | 55 |
| abstract_inverted_index.extraction | 225 |
| abstract_inverted_index.generation | 98 |
| abstract_inverted_index.individual | 36 |
| abstract_inverted_index.localized, | 73 |
| abstract_inverted_index.localizing | 131 |
| abstract_inverted_index.prominent. | 140 |
| abstract_inverted_index.recordings | 146, 152 |
| abstract_inverted_index.components, | 33 |
| abstract_inverted_index.extraction. | 93 |
| abstract_inverted_index.performance | 195, 236 |
| abstract_inverted_index.sensitivity | 175, 205 |
| abstract_inverted_index.significant | 22 |
| abstract_inverted_index.variability | 23, 50, 86 |
| abstract_inverted_index.conventional | 224 |
| abstract_inverted_index.differences, | 37 |
| abstract_inverted_index.participants | 157 |
| abstract_inverted_index.predictivity | 178 |
| abstract_inverted_index.second-order | 113 |
| abstract_inverted_index.variability, | 128 |
| abstract_inverted_index.variability. | 234 |
| abstract_inverted_index.generalizable | 64 |
| abstract_inverted_index.instantaneous | 38 |
| abstract_inverted_index.non-prominent | 242 |
| abstract_inverted_index.predictivity, | 208 |
| abstract_inverted_index.respectively. | 186, 209 |
| abstract_inverted_index.high-heart-rate | 154, 188, 248 |
| abstract_inverted_index.low-heart-rate: | 200 |
| abstract_inverted_index.ballistocardiogram | 2 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile.value | 0.62680573 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |