Some Tests Based on the Profile Likelihood Estimator for Testing Homogeneity of Diagnostic Odds Ratios in Meta-analysis Article Swipe
YOU?
·
· 2016
· Open Access
·
· DOI: https://doi.org/10.1016/j.procs.2016.05.098
This research aims to propose some modified tests "χ2PLE1" and "χ2PLE2" based on the profile likelihood estimator for testing homogeneity of diagnostic odds ratios in meta-analysis and compare their performances with the conventional tests of QWLS, QMH and χ2Con. According to the performance in terms of type I error rates under H0 and power of tests under H1, Monte Carlo simulation with R language was applied. The results found that all of tests cannot control type I error rates when sample sizes are small (nDi, nHi≤5), regardless of study size (k). However, for k ≥ 16 in combination with nDi, nHi ≤ 50, three tests (χ2PLE1, QWLS, χ2Con) can control type I error rates in almost all situations. In addition, the profile test (χ2PLE1) performs best with highest power when nDi, nHi = 50,100 for k ≥ 16, while conventional tests of QWLS and χ2Con perform well with the same power as the profile test (χ2PLE1) when nDi, nHi = 500 for k ≥ 16. Therefore, the χ2PLE1 is recommended to be used when k ≥ 16 in combination with nDi, nHi = 500.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.procs.2016.05.098
- OA Status
- diamond
- References
- 3
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2405178317
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2405178317Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.procs.2016.05.098Digital Object Identifier
- Title
-
Some Tests Based on the Profile Likelihood Estimator for Testing Homogeneity of Diagnostic Odds Ratios in Meta-analysisWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2016Year of publication
- Publication date
-
2016-01-01Full publication date if available
- Authors
-
Khanokporn Donjdee, Pratana Satitvipawee, Prasong Kitidamrongsuk, Pichitpong Soontornpipit, Jutatip Sillabutra, Chukiat ViwatwongkasemList of authors in order
- Landing page
-
https://doi.org/10.1016/j.procs.2016.05.098Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.procs.2016.05.098Direct OA link when available
- Concepts
-
Homogeneity (statistics), Type I and type II errors, Estimator, Statistics, Computer science, Meta-analysis, Monte Carlo method, Diagnostic odds ratio, Sample size determination, Statistical hypothesis testing, Confidence interval, Mathematics, Medicine, Internal medicineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
3Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2405178317 |
|---|---|
| doi | https://doi.org/10.1016/j.procs.2016.05.098 |
| ids.doi | https://doi.org/10.1016/j.procs.2016.05.098 |
| ids.mag | 2405178317 |
| ids.openalex | https://openalex.org/W2405178317 |
| fwci | 0.0 |
| type | article |
| title | Some Tests Based on the Profile Likelihood Estimator for Testing Homogeneity of Diagnostic Odds Ratios in Meta-analysis |
| biblio.issue | |
| biblio.volume | 86 |
| biblio.last_page | 223 |
| biblio.first_page | 220 |
| topics[0].id | https://openalex.org/T10206 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.7792999744415283 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1804 |
| topics[0].subfield.display_name | Statistics, Probability and Uncertainty |
| topics[0].display_name | Meta-analysis and systematic reviews |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C142259097 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7905216217041016 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5891314 |
| concepts[0].display_name | Homogeneity (statistics) |
| concepts[1].id | https://openalex.org/C40696583 |
| concepts[1].level | 2 |
| concepts[1].score | 0.740319013595581 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q989120 |
| concepts[1].display_name | Type I and type II errors |
| concepts[2].id | https://openalex.org/C185429906 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6773285269737244 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1130160 |
| concepts[2].display_name | Estimator |
| concepts[3].id | https://openalex.org/C105795698 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5929396152496338 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[3].display_name | Statistics |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5556975603103638 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C95190672 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5210827589035034 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q815382 |
| concepts[5].display_name | Meta-analysis |
| concepts[6].id | https://openalex.org/C19499675 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4990813732147217 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q232207 |
| concepts[6].display_name | Monte Carlo method |
| concepts[7].id | https://openalex.org/C157481446 |
| concepts[7].level | 3 |
| concepts[7].score | 0.48664984107017517 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5270351 |
| concepts[7].display_name | Diagnostic odds ratio |
| concepts[8].id | https://openalex.org/C129848803 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4848438501358032 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2564360 |
| concepts[8].display_name | Sample size determination |
| concepts[9].id | https://openalex.org/C87007009 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4459607005119324 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q210832 |
| concepts[9].display_name | Statistical hypothesis testing |
| concepts[10].id | https://openalex.org/C44249647 |
| concepts[10].level | 2 |
| concepts[10].score | 0.3034864068031311 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q208498 |
| concepts[10].display_name | Confidence interval |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.2887214720249176 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C71924100 |
| concepts[12].level | 0 |
| concepts[12].score | 0.10095611214637756 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[12].display_name | Medicine |
| concepts[13].id | https://openalex.org/C126322002 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[13].display_name | Internal medicine |
| keywords[0].id | https://openalex.org/keywords/homogeneity |
| keywords[0].score | 0.7905216217041016 |
| keywords[0].display_name | Homogeneity (statistics) |
| keywords[1].id | https://openalex.org/keywords/type-i-and-type-ii-errors |
| keywords[1].score | 0.740319013595581 |
| keywords[1].display_name | Type I and type II errors |
| keywords[2].id | https://openalex.org/keywords/estimator |
| keywords[2].score | 0.6773285269737244 |
| keywords[2].display_name | Estimator |
| keywords[3].id | https://openalex.org/keywords/statistics |
| keywords[3].score | 0.5929396152496338 |
| keywords[3].display_name | Statistics |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.5556975603103638 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/meta-analysis |
| keywords[5].score | 0.5210827589035034 |
| keywords[5].display_name | Meta-analysis |
| keywords[6].id | https://openalex.org/keywords/monte-carlo-method |
| keywords[6].score | 0.4990813732147217 |
| keywords[6].display_name | Monte Carlo method |
| keywords[7].id | https://openalex.org/keywords/diagnostic-odds-ratio |
| keywords[7].score | 0.48664984107017517 |
| keywords[7].display_name | Diagnostic odds ratio |
| keywords[8].id | https://openalex.org/keywords/sample-size-determination |
| keywords[8].score | 0.4848438501358032 |
| keywords[8].display_name | Sample size determination |
| keywords[9].id | https://openalex.org/keywords/statistical-hypothesis-testing |
| keywords[9].score | 0.4459607005119324 |
| keywords[9].display_name | Statistical hypothesis testing |
| keywords[10].id | https://openalex.org/keywords/confidence-interval |
| keywords[10].score | 0.3034864068031311 |
| keywords[10].display_name | Confidence interval |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.2887214720249176 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/medicine |
| keywords[12].score | 0.10095611214637756 |
| keywords[12].display_name | Medicine |
| language | en |
| locations[0].id | doi:10.1016/j.procs.2016.05.098 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S120348307 |
| locations[0].source.issn | 1877-0509 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1877-0509 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Procedia Computer Science |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Procedia Computer Science |
| locations[0].landing_page_url | https://doi.org/10.1016/j.procs.2016.05.098 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5045140242 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Khanokporn Donjdee |
| authorships[0].countries | TH |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I25399158 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Biostatistics, Faculty of Public Health, Mahidol University, Bangkok 10400, Thailand |
| authorships[0].institutions[0].id | https://openalex.org/I25399158 |
| authorships[0].institutions[0].ror | https://ror.org/01znkr924 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I25399158 |
| authorships[0].institutions[0].country_code | TH |
| authorships[0].institutions[0].display_name | Mahidol University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Khanokporn Donjdee |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Biostatistics, Faculty of Public Health, Mahidol University, Bangkok 10400, Thailand |
| authorships[1].author.id | https://openalex.org/A5087865208 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7614-1171 |
| authorships[1].author.display_name | Pratana Satitvipawee |
| authorships[1].countries | TH |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I25399158 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Biostatistics, Faculty of Public Health, Mahidol University, Bangkok 10400, Thailand |
| authorships[1].institutions[0].id | https://openalex.org/I25399158 |
| authorships[1].institutions[0].ror | https://ror.org/01znkr924 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I25399158 |
| authorships[1].institutions[0].country_code | TH |
| authorships[1].institutions[0].display_name | Mahidol University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Pratana Satitvipawee |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Biostatistics, Faculty of Public Health, Mahidol University, Bangkok 10400, Thailand |
| authorships[2].author.id | https://openalex.org/A5063305282 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Prasong Kitidamrongsuk |
| authorships[2].countries | TH |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I25399158 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Biostatistics, Faculty of Public Health, Mahidol University, Bangkok 10400, Thailand |
| authorships[2].institutions[0].id | https://openalex.org/I25399158 |
| authorships[2].institutions[0].ror | https://ror.org/01znkr924 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I25399158 |
| authorships[2].institutions[0].country_code | TH |
| authorships[2].institutions[0].display_name | Mahidol University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Prasong Kitidamrongsuk |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Biostatistics, Faculty of Public Health, Mahidol University, Bangkok 10400, Thailand |
| authorships[3].author.id | https://openalex.org/A5075837967 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Pichitpong Soontornpipit |
| authorships[3].countries | TH |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I25399158 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Biostatistics, Faculty of Public Health, Mahidol University, Bangkok 10400, Thailand |
| authorships[3].institutions[0].id | https://openalex.org/I25399158 |
| authorships[3].institutions[0].ror | https://ror.org/01znkr924 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I25399158 |
| authorships[3].institutions[0].country_code | TH |
| authorships[3].institutions[0].display_name | Mahidol University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Pichitpong Soontornpipit |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Biostatistics, Faculty of Public Health, Mahidol University, Bangkok 10400, Thailand |
| authorships[4].author.id | https://openalex.org/A5062292883 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9884-4193 |
| authorships[4].author.display_name | Jutatip Sillabutra |
| authorships[4].countries | TH |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I25399158 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Biostatistics, Faculty of Public Health, Mahidol University, Bangkok 10400, Thailand |
| authorships[4].institutions[0].id | https://openalex.org/I25399158 |
| authorships[4].institutions[0].ror | https://ror.org/01znkr924 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I25399158 |
| authorships[4].institutions[0].country_code | TH |
| authorships[4].institutions[0].display_name | Mahidol University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Jutatip Sillabutra |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Biostatistics, Faculty of Public Health, Mahidol University, Bangkok 10400, Thailand |
| authorships[5].author.id | https://openalex.org/A5080500080 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-4918-2717 |
| authorships[5].author.display_name | Chukiat Viwatwongkasem |
| authorships[5].countries | TH |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I25399158 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Biostatistics, Faculty of Public Health, Mahidol University, Bangkok 10400, Thailand |
| authorships[5].institutions[0].id | https://openalex.org/I25399158 |
| authorships[5].institutions[0].ror | https://ror.org/01znkr924 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I25399158 |
| authorships[5].institutions[0].country_code | TH |
| authorships[5].institutions[0].display_name | Mahidol University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Chukiat Viwatwongkasem |
| authorships[5].is_corresponding | True |
| authorships[5].raw_affiliation_strings | Department of Biostatistics, Faculty of Public Health, Mahidol University, Bangkok 10400, Thailand |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.procs.2016.05.098 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Some Tests Based on the Profile Likelihood Estimator for Testing Homogeneity of Diagnostic Odds Ratios in Meta-analysis |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10206 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.7792999744415283 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1804 |
| primary_topic.subfield.display_name | Statistics, Probability and Uncertainty |
| primary_topic.display_name | Meta-analysis and systematic reviews |
| related_works | https://openalex.org/W1607313810, https://openalex.org/W2047140783, https://openalex.org/W3088276941, https://openalex.org/W2272564853, https://openalex.org/W2056967931, https://openalex.org/W84084013, https://openalex.org/W2244339280, https://openalex.org/W3137029931, https://openalex.org/W2924126641, https://openalex.org/W2133619163 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.procs.2016.05.098 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S120348307 |
| best_oa_location.source.issn | 1877-0509 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1877-0509 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Procedia Computer Science |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Procedia Computer Science |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.procs.2016.05.098 |
| primary_location.id | doi:10.1016/j.procs.2016.05.098 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S120348307 |
| primary_location.source.issn | 1877-0509 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1877-0509 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Procedia Computer Science |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Procedia Computer Science |
| primary_location.landing_page_url | https://doi.org/10.1016/j.procs.2016.05.098 |
| publication_date | 2016-01-01 |
| publication_year | 2016 |
| referenced_works | https://openalex.org/W2133669796, https://openalex.org/W2315123323, https://openalex.org/W1600645574 |
| referenced_works_count | 3 |
| abstract_inverted_index.= | 132, 159, 182 |
| abstract_inverted_index.I | 47, 76, 111 |
| abstract_inverted_index.R | 62 |
| abstract_inverted_index.k | 93, 135, 162, 174 |
| abstract_inverted_index.16 | 95, 176 |
| abstract_inverted_index.H0 | 51 |
| abstract_inverted_index.In | 118 |
| abstract_inverted_index.as | 151 |
| abstract_inverted_index.be | 171 |
| abstract_inverted_index.in | 24, 43, 96, 114, 177 |
| abstract_inverted_index.is | 168 |
| abstract_inverted_index.of | 20, 34, 45, 54, 71, 87, 141 |
| abstract_inverted_index.on | 12 |
| abstract_inverted_index.to | 3, 40, 170 |
| abstract_inverted_index.16, | 137 |
| abstract_inverted_index.16. | 164 |
| abstract_inverted_index.50, | 102 |
| abstract_inverted_index.500 | 160 |
| abstract_inverted_index.H1, | 57 |
| abstract_inverted_index.QMH | 36 |
| abstract_inverted_index.The | 66 |
| abstract_inverted_index.all | 70, 116 |
| abstract_inverted_index.and | 9, 26, 37, 52, 143 |
| abstract_inverted_index.are | 82 |
| abstract_inverted_index.can | 108 |
| abstract_inverted_index.for | 17, 92, 134, 161 |
| abstract_inverted_index.nHi | 100, 131, 158, 181 |
| abstract_inverted_index.the | 13, 31, 41, 120, 148, 152, 166 |
| abstract_inverted_index.was | 64 |
| abstract_inverted_index.≤ | 101 |
| abstract_inverted_index.≥ | 94, 136, 163, 175 |
| abstract_inverted_index.(k). | 90 |
| abstract_inverted_index.500. | 183 |
| abstract_inverted_index.QWLS | 142 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.aims | 2 |
| abstract_inverted_index.best | 125 |
| abstract_inverted_index.nDi, | 99, 130, 157, 180 |
| abstract_inverted_index.odds | 22 |
| abstract_inverted_index.same | 149 |
| abstract_inverted_index.size | 89 |
| abstract_inverted_index.some | 5 |
| abstract_inverted_index.test | 122, 154 |
| abstract_inverted_index.that | 69 |
| abstract_inverted_index.type | 46, 75, 110 |
| abstract_inverted_index.used | 172 |
| abstract_inverted_index.well | 146 |
| abstract_inverted_index.when | 79, 129, 156, 173 |
| abstract_inverted_index.with | 30, 61, 98, 126, 147, 179 |
| abstract_inverted_index.(nDi, | 84 |
| abstract_inverted_index.Carlo | 59 |
| abstract_inverted_index.Monte | 58 |
| abstract_inverted_index.QWLS, | 35, 106 |
| abstract_inverted_index.based | 11 |
| abstract_inverted_index.error | 48, 77, 112 |
| abstract_inverted_index.found | 68 |
| abstract_inverted_index.power | 53, 128, 150 |
| abstract_inverted_index.rates | 49, 78, 113 |
| abstract_inverted_index.sizes | 81 |
| abstract_inverted_index.small | 83 |
| abstract_inverted_index.study | 88 |
| abstract_inverted_index.terms | 44 |
| abstract_inverted_index.tests | 7, 33, 55, 72, 104, 140 |
| abstract_inverted_index.their | 28 |
| abstract_inverted_index.three | 103 |
| abstract_inverted_index.under | 50, 56 |
| abstract_inverted_index.while | 138 |
| abstract_inverted_index.50,100 | 133 |
| abstract_inverted_index.almost | 115 |
| abstract_inverted_index.cannot | 73 |
| abstract_inverted_index.ratios | 23 |
| abstract_inverted_index.sample | 80 |
| abstract_inverted_index.χ2Con | 144 |
| abstract_inverted_index.compare | 27 |
| abstract_inverted_index.control | 74, 109 |
| abstract_inverted_index.highest | 127 |
| abstract_inverted_index.perform | 145 |
| abstract_inverted_index.profile | 14, 121, 153 |
| abstract_inverted_index.propose | 4 |
| abstract_inverted_index.results | 67 |
| abstract_inverted_index.testing | 18 |
| abstract_inverted_index.χ2Con) | 107 |
| abstract_inverted_index.χ2Con. | 38 |
| abstract_inverted_index.χ2PLE1 | 167 |
| abstract_inverted_index.However, | 91 |
| abstract_inverted_index.applied. | 65 |
| abstract_inverted_index.language | 63 |
| abstract_inverted_index.modified | 6 |
| abstract_inverted_index.performs | 124 |
| abstract_inverted_index.research | 1 |
| abstract_inverted_index."χ2PLE1" | 8 |
| abstract_inverted_index."χ2PLE2" | 10 |
| abstract_inverted_index.(χ2PLE1) | 123, 155 |
| abstract_inverted_index.(χ2PLE1, | 105 |
| abstract_inverted_index.According | 39 |
| abstract_inverted_index.addition, | 119 |
| abstract_inverted_index.estimator | 16 |
| abstract_inverted_index.nHi≤5), | 85 |
| abstract_inverted_index.Therefore, | 165 |
| abstract_inverted_index.diagnostic | 21 |
| abstract_inverted_index.likelihood | 15 |
| abstract_inverted_index.regardless | 86 |
| abstract_inverted_index.simulation | 60 |
| abstract_inverted_index.combination | 97, 178 |
| abstract_inverted_index.homogeneity | 19 |
| abstract_inverted_index.performance | 42 |
| abstract_inverted_index.recommended | 169 |
| abstract_inverted_index.situations. | 117 |
| abstract_inverted_index.conventional | 32, 139 |
| abstract_inverted_index.performances | 29 |
| abstract_inverted_index.meta-analysis | 25 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5080500080 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I25399158 |
| citation_normalized_percentile.value | 0.03811789 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |