Source-Load Coordinated Optimal Scheduling Considering the High Energy Load of Electrofused Magnesium and Wind Power Uncertainty Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.32604/ee.2024.052331
In fossil energy pollution is serious and the "double carbon" goal is being promoted, as a symbol of fresh energy in the electrical system, solar and wind power have an increasing installed capacity, only conventional units obviously can not solve the new energy as the main body of the scheduling problem.To enhance the system scheduling ability, based on the participation of thermal power units, incorporate the high energy-carrying load of electro-melting magnesium into the regulation object, and consider the effects on the wind unpredictability of the power.Firstly, the operating characteristics of high energy load and wind power are analyzed, and the principle of the participation of electrofused magnesium high energy-carrying loads in the elimination of obstructed wind power is studied.Second, a two-layer optimization model is suggested, with the objective function being the largest amount of wind power consumed and the lowest possible cost of system operation.In the upper model, the high energy-carrying load regulates the blocked wind power, and in the lower model, the second-order cone approximation algorithm is used to solve the optimization model with wind power uncertainty, so that a two-layer optimization model that takes into account the regulation of the high energy-carrying load of the electrofused magnesium and the uncertainty of the wind power is established.Finally, the model is solved using Gurobi, and the results of the simulation demonstrate that the suggested model may successfully lower wind abandonment, lower system operation costs, increase the accuracy of day-ahead scheduling, and lower the final product error of the thermal electricity unit.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.32604/ee.2024.052331
- https://www.techscience.com/energy/online/detail/20989/pdf
- OA Status
- diamond
- Cited By
- 4
- References
- 25
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4400367733
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4400367733Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.32604/ee.2024.052331Digital Object Identifier
- Title
-
Source-Load Coordinated Optimal Scheduling Considering the High Energy Load of Electrofused Magnesium and Wind Power UncertaintyWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Juan Li, Tingting Xu, Gu Yi, Chuang Liu, Guiping Zhou, Guoliang BianList of authors in order
- Landing page
-
https://doi.org/10.32604/ee.2024.052331Publisher landing page
- PDF URL
-
https://www.techscience.com/energy/online/detail/20989/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://www.techscience.com/energy/online/detail/20989/pdfDirect OA link when available
- Concepts
-
Wind power, Scheduling (production processes), Electric power system, Control theory (sociology), Environmental science, Power (physics), Computer science, Automotive engineering, Engineering, Mathematical optimization, Electrical engineering, Mathematics, Physics, Quantum mechanics, Artificial intelligence, Control (management)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4Per-year citation counts (last 5 years)
- References (count)
-
25Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4400367733 |
|---|---|
| doi | https://doi.org/10.32604/ee.2024.052331 |
| ids.doi | https://doi.org/10.32604/ee.2024.052331 |
| ids.openalex | https://openalex.org/W4400367733 |
| fwci | 1.47667389 |
| type | article |
| title | Source-Load Coordinated Optimal Scheduling Considering the High Energy Load of Electrofused Magnesium and Wind Power Uncertainty |
| biblio.issue | 10 |
| biblio.volume | 121 |
| biblio.last_page | 2795 |
| biblio.first_page | 2777 |
| topics[0].id | https://openalex.org/T10424 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9983000159263611 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Electric Power System Optimization |
| topics[1].id | https://openalex.org/T10223 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9962000250816345 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2207 |
| topics[1].subfield.display_name | Control and Systems Engineering |
| topics[1].display_name | Microgrid Control and Optimization |
| topics[2].id | https://openalex.org/T11052 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9926000237464905 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Energy Load and Power Forecasting |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C78600449 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6533693075180054 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q43302 |
| concepts[0].display_name | Wind power |
| concepts[1].id | https://openalex.org/C206729178 |
| concepts[1].level | 2 |
| concepts[1].score | 0.4163157045841217 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2271896 |
| concepts[1].display_name | Scheduling (production processes) |
| concepts[2].id | https://openalex.org/C89227174 |
| concepts[2].level | 3 |
| concepts[2].score | 0.41349658370018005 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2388981 |
| concepts[2].display_name | Electric power system |
| concepts[3].id | https://openalex.org/C47446073 |
| concepts[3].level | 3 |
| concepts[3].score | 0.39312517642974854 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5165890 |
| concepts[3].display_name | Control theory (sociology) |
| concepts[4].id | https://openalex.org/C39432304 |
| concepts[4].level | 0 |
| concepts[4].score | 0.39250171184539795 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[4].display_name | Environmental science |
| concepts[5].id | https://openalex.org/C163258240 |
| concepts[5].level | 2 |
| concepts[5].score | 0.34824156761169434 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[5].display_name | Power (physics) |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.34777742624282837 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C171146098 |
| concepts[7].level | 1 |
| concepts[7].score | 0.33185815811157227 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q124192 |
| concepts[7].display_name | Automotive engineering |
| concepts[8].id | https://openalex.org/C127413603 |
| concepts[8].level | 0 |
| concepts[8].score | 0.32642489671707153 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[8].display_name | Engineering |
| concepts[9].id | https://openalex.org/C126255220 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3193126916885376 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[9].display_name | Mathematical optimization |
| concepts[10].id | https://openalex.org/C119599485 |
| concepts[10].level | 1 |
| concepts[10].score | 0.19106751680374146 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[10].display_name | Electrical engineering |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.13141608238220215 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C121332964 |
| concepts[12].level | 0 |
| concepts[12].score | 0.10125699639320374 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[12].display_name | Physics |
| concepts[13].id | https://openalex.org/C62520636 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[13].display_name | Quantum mechanics |
| concepts[14].id | https://openalex.org/C154945302 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[14].display_name | Artificial intelligence |
| concepts[15].id | https://openalex.org/C2775924081 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q55608371 |
| concepts[15].display_name | Control (management) |
| keywords[0].id | https://openalex.org/keywords/wind-power |
| keywords[0].score | 0.6533693075180054 |
| keywords[0].display_name | Wind power |
| keywords[1].id | https://openalex.org/keywords/scheduling |
| keywords[1].score | 0.4163157045841217 |
| keywords[1].display_name | Scheduling (production processes) |
| keywords[2].id | https://openalex.org/keywords/electric-power-system |
| keywords[2].score | 0.41349658370018005 |
| keywords[2].display_name | Electric power system |
| keywords[3].id | https://openalex.org/keywords/control-theory |
| keywords[3].score | 0.39312517642974854 |
| keywords[3].display_name | Control theory (sociology) |
| keywords[4].id | https://openalex.org/keywords/environmental-science |
| keywords[4].score | 0.39250171184539795 |
| keywords[4].display_name | Environmental science |
| keywords[5].id | https://openalex.org/keywords/power |
| keywords[5].score | 0.34824156761169434 |
| keywords[5].display_name | Power (physics) |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.34777742624282837 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/automotive-engineering |
| keywords[7].score | 0.33185815811157227 |
| keywords[7].display_name | Automotive engineering |
| keywords[8].id | https://openalex.org/keywords/engineering |
| keywords[8].score | 0.32642489671707153 |
| keywords[8].display_name | Engineering |
| keywords[9].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[9].score | 0.3193126916885376 |
| keywords[9].display_name | Mathematical optimization |
| keywords[10].id | https://openalex.org/keywords/electrical-engineering |
| keywords[10].score | 0.19106751680374146 |
| keywords[10].display_name | Electrical engineering |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.13141608238220215 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/physics |
| keywords[12].score | 0.10125699639320374 |
| keywords[12].display_name | Physics |
| language | en |
| locations[0].id | doi:10.32604/ee.2024.052331 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S50979996 |
| locations[0].source.issn | 0199-8595, 1546-0118 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 0199-8595 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Energy Engineering |
| locations[0].source.host_organization | https://openalex.org/P4310320547 |
| locations[0].source.host_organization_name | Taylor & Francis |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320547 |
| locations[0].source.host_organization_lineage_names | Taylor & Francis |
| locations[0].license | |
| locations[0].pdf_url | https://www.techscience.com/energy/online/detail/20989/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Energy Engineering |
| locations[0].landing_page_url | https://doi.org/10.32604/ee.2024.052331 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5100666590 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9991-1538 |
| authorships[0].author.display_name | Juan Li |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I179060312 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Electrical Engineering, Northeast Electric Power University, Jilin, 132013, China |
| authorships[0].institutions[0].id | https://openalex.org/I179060312 |
| authorships[0].institutions[0].ror | https://ror.org/00zqaxa34 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I179060312 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Northeast Electric Power University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Juan Li |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Electrical Engineering, Northeast Electric Power University, Jilin, 132013, China |
| authorships[1].author.id | https://openalex.org/A5100385892 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5524-035X |
| authorships[1].author.display_name | Tingting Xu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I179060312 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Electrical Engineering, Northeast Electric Power University, Jilin, 132013, China |
| authorships[1].institutions[0].id | https://openalex.org/I179060312 |
| authorships[1].institutions[0].ror | https://ror.org/00zqaxa34 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I179060312 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Northeast Electric Power University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tingting Xu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Electrical Engineering, Northeast Electric Power University, Jilin, 132013, China |
| authorships[2].author.id | https://openalex.org/A5101087428 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5859-5137 |
| authorships[2].author.display_name | Gu Yi |
| authorships[2].affiliations[0].raw_affiliation_string | Ministry of Science and Technology Communication, State Grid Liaoning Electric Power Co., Ltd., Shenyang, 110000, China |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yi Gu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Ministry of Science and Technology Communication, State Grid Liaoning Electric Power Co., Ltd., Shenyang, 110000, China |
| authorships[3].author.id | https://openalex.org/A5100326619 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0499-2468 |
| authorships[3].author.display_name | Chuang Liu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I179060312 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Electrical Engineering, Northeast Electric Power University, Jilin, 132013, China |
| authorships[3].institutions[0].id | https://openalex.org/I179060312 |
| authorships[3].institutions[0].ror | https://ror.org/00zqaxa34 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I179060312 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Northeast Electric Power University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Chuang Liu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Electrical Engineering, Northeast Electric Power University, Jilin, 132013, China |
| authorships[4].author.id | https://openalex.org/A5103013924 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3351-8098 |
| authorships[4].author.display_name | Guiping Zhou |
| authorships[4].affiliations[0].raw_affiliation_string | Ministry of Science and Technology Communication, State Grid Liaoning Electric Power Co., Ltd., Shenyang, 110000, China |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Guiping Zhou |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Ministry of Science and Technology Communication, State Grid Liaoning Electric Power Co., Ltd., Shenyang, 110000, China |
| authorships[5].author.id | https://openalex.org/A5099186262 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Guoliang Bian |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I179060312 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Electrical Engineering, Northeast Electric Power University, Jilin, 132013, China |
| authorships[5].institutions[0].id | https://openalex.org/I179060312 |
| authorships[5].institutions[0].ror | https://ror.org/00zqaxa34 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I179060312 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Northeast Electric Power University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Guoliang Bian |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Electrical Engineering, Northeast Electric Power University, Jilin, 132013, China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.techscience.com/energy/online/detail/20989/pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Source-Load Coordinated Optimal Scheduling Considering the High Energy Load of Electrofused Magnesium and Wind Power Uncertainty |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10424 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9983000159263611 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Electric Power System Optimization |
| related_works | https://openalex.org/W2557657611, https://openalex.org/W4211120176, https://openalex.org/W1986587019, https://openalex.org/W2108466866, https://openalex.org/W4307690338, https://openalex.org/W2138908244, https://openalex.org/W4380898831, https://openalex.org/W4234407667, https://openalex.org/W4389372435, https://openalex.org/W2780766618 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| locations_count | 1 |
| best_oa_location.id | doi:10.32604/ee.2024.052331 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S50979996 |
| best_oa_location.source.issn | 0199-8595, 1546-0118 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 0199-8595 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Energy Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310320547 |
| best_oa_location.source.host_organization_name | Taylor & Francis |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320547 |
| best_oa_location.source.host_organization_lineage_names | Taylor & Francis |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.techscience.com/energy/online/detail/20989/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Energy Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.32604/ee.2024.052331 |
| primary_location.id | doi:10.32604/ee.2024.052331 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S50979996 |
| primary_location.source.issn | 0199-8595, 1546-0118 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 0199-8595 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Energy Engineering |
| primary_location.source.host_organization | https://openalex.org/P4310320547 |
| primary_location.source.host_organization_name | Taylor & Francis |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320547 |
| primary_location.source.host_organization_lineage_names | Taylor & Francis |
| primary_location.license | |
| primary_location.pdf_url | https://www.techscience.com/energy/online/detail/20989/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Energy Engineering |
| primary_location.landing_page_url | https://doi.org/10.32604/ee.2024.052331 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3158422704, https://openalex.org/W4385759251, https://openalex.org/W2953936648, https://openalex.org/W3000632091, https://openalex.org/W2888954216, https://openalex.org/W2192443814, https://openalex.org/W4391131211, https://openalex.org/W4295949356, https://openalex.org/W4378894752, https://openalex.org/W6839650357, https://openalex.org/W4390427607, https://openalex.org/W4385717389, https://openalex.org/W2942667917, https://openalex.org/W3116375014, https://openalex.org/W3011463769, https://openalex.org/W2997783524, https://openalex.org/W4387976875, https://openalex.org/W2916628807, https://openalex.org/W4365800925, https://openalex.org/W2987891012, https://openalex.org/W4313129698, https://openalex.org/W779821908, https://openalex.org/W2000587848, https://openalex.org/W4285234573, https://openalex.org/W2949245085 |
| referenced_works_count | 25 |
| abstract_inverted_index.a | 15, 120, 181 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.an | 29 |
| abstract_inverted_index.as | 14, 43 |
| abstract_inverted_index.in | 20, 111, 159 |
| abstract_inverted_index.is | 4, 11, 118, 124, 168, 207, 211 |
| abstract_inverted_index.of | 17, 47, 60, 69, 84, 90, 102, 105, 114, 134, 143, 191, 196, 203, 218, 238, 247 |
| abstract_inverted_index.on | 57, 80 |
| abstract_inverted_index.so | 179 |
| abstract_inverted_index.to | 170 |
| abstract_inverted_index.and | 6, 25, 76, 94, 99, 138, 158, 200, 215, 241 |
| abstract_inverted_index.are | 97 |
| abstract_inverted_index.can | 37 |
| abstract_inverted_index.may | 226 |
| abstract_inverted_index.new | 41 |
| abstract_inverted_index.not | 38 |
| abstract_inverted_index.the | 7, 21, 40, 44, 48, 52, 58, 65, 73, 78, 81, 85, 87, 100, 103, 112, 127, 131, 139, 146, 149, 154, 160, 163, 172, 189, 192, 197, 201, 204, 209, 216, 219, 223, 236, 243, 248 |
| abstract_inverted_index.body | 46 |
| abstract_inverted_index.cone | 165 |
| abstract_inverted_index.cost | 142 |
| abstract_inverted_index.goal | 10 |
| abstract_inverted_index.have | 28 |
| abstract_inverted_index.high | 66, 91, 108, 150, 193 |
| abstract_inverted_index.into | 72, 187 |
| abstract_inverted_index.load | 68, 93, 152, 195 |
| abstract_inverted_index.main | 45 |
| abstract_inverted_index.only | 33 |
| abstract_inverted_index.that | 180, 185, 222 |
| abstract_inverted_index.used | 169 |
| abstract_inverted_index.wind | 26, 82, 95, 116, 135, 156, 176, 205, 229 |
| abstract_inverted_index.with | 126, 175 |
| abstract_inverted_index.based | 56 |
| abstract_inverted_index.being | 12, 130 |
| abstract_inverted_index.error | 246 |
| abstract_inverted_index.final | 244 |
| abstract_inverted_index.fresh | 18 |
| abstract_inverted_index.loads | 110 |
| abstract_inverted_index.lower | 161, 228, 231, 242 |
| abstract_inverted_index.model | 123, 174, 184, 210, 225 |
| abstract_inverted_index.power | 27, 62, 96, 117, 136, 177, 206 |
| abstract_inverted_index.solar | 24 |
| abstract_inverted_index.solve | 39, 171 |
| abstract_inverted_index.takes | 186 |
| abstract_inverted_index.unit. | 251 |
| abstract_inverted_index.units | 35 |
| abstract_inverted_index.upper | 147 |
| abstract_inverted_index.using | 213 |
| abstract_inverted_index.amount | 133 |
| abstract_inverted_index.costs, | 234 |
| abstract_inverted_index.energy | 2, 19, 42, 92 |
| abstract_inverted_index.fossil | 1 |
| abstract_inverted_index.lowest | 140 |
| abstract_inverted_index.model, | 148, 162 |
| abstract_inverted_index.power, | 157 |
| abstract_inverted_index.solved | 212 |
| abstract_inverted_index.symbol | 16 |
| abstract_inverted_index.system | 53, 144, 232 |
| abstract_inverted_index.units, | 63 |
| abstract_inverted_index."double | 8 |
| abstract_inverted_index.Gurobi, | 214 |
| abstract_inverted_index.account | 188 |
| abstract_inverted_index.blocked | 155 |
| abstract_inverted_index.carbon" | 9 |
| abstract_inverted_index.effects | 79 |
| abstract_inverted_index.enhance | 51 |
| abstract_inverted_index.largest | 132 |
| abstract_inverted_index.object, | 75 |
| abstract_inverted_index.product | 245 |
| abstract_inverted_index.results | 217 |
| abstract_inverted_index.serious | 5 |
| abstract_inverted_index.system, | 23 |
| abstract_inverted_index.thermal | 61, 249 |
| abstract_inverted_index.ability, | 55 |
| abstract_inverted_index.accuracy | 237 |
| abstract_inverted_index.consider | 77 |
| abstract_inverted_index.consumed | 137 |
| abstract_inverted_index.function | 129 |
| abstract_inverted_index.increase | 235 |
| abstract_inverted_index.possible | 141 |
| abstract_inverted_index.algorithm | 167 |
| abstract_inverted_index.analyzed, | 98 |
| abstract_inverted_index.capacity, | 32 |
| abstract_inverted_index.day-ahead | 239 |
| abstract_inverted_index.installed | 31 |
| abstract_inverted_index.magnesium | 71, 107, 199 |
| abstract_inverted_index.objective | 128 |
| abstract_inverted_index.obviously | 36 |
| abstract_inverted_index.operating | 88 |
| abstract_inverted_index.operation | 233 |
| abstract_inverted_index.pollution | 3 |
| abstract_inverted_index.principle | 101 |
| abstract_inverted_index.promoted, | 13 |
| abstract_inverted_index.regulates | 153 |
| abstract_inverted_index.suggested | 224 |
| abstract_inverted_index.two-layer | 121, 182 |
| abstract_inverted_index.electrical | 22 |
| abstract_inverted_index.increasing | 30 |
| abstract_inverted_index.obstructed | 115 |
| abstract_inverted_index.problem.To | 50 |
| abstract_inverted_index.regulation | 74, 190 |
| abstract_inverted_index.scheduling | 49, 54 |
| abstract_inverted_index.simulation | 220 |
| abstract_inverted_index.suggested, | 125 |
| abstract_inverted_index.demonstrate | 221 |
| abstract_inverted_index.electricity | 250 |
| abstract_inverted_index.elimination | 113 |
| abstract_inverted_index.incorporate | 64 |
| abstract_inverted_index.scheduling, | 240 |
| abstract_inverted_index.uncertainty | 202 |
| abstract_inverted_index.abandonment, | 230 |
| abstract_inverted_index.conventional | 34 |
| abstract_inverted_index.electrofused | 106, 198 |
| abstract_inverted_index.operation.In | 145 |
| abstract_inverted_index.optimization | 122, 173, 183 |
| abstract_inverted_index.second-order | 164 |
| abstract_inverted_index.successfully | 227 |
| abstract_inverted_index.uncertainty, | 178 |
| abstract_inverted_index.approximation | 166 |
| abstract_inverted_index.participation | 59, 104 |
| abstract_inverted_index.power.Firstly, | 86 |
| abstract_inverted_index.characteristics | 89 |
| abstract_inverted_index.electro-melting | 70 |
| abstract_inverted_index.energy-carrying | 67, 109, 151, 194 |
| abstract_inverted_index.studied.Second, | 119 |
| abstract_inverted_index.unpredictability | 83 |
| abstract_inverted_index.established.Finally, | 208 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.8899999856948853 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.7863657 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |