SourceDetMamba: A Graph-aware State Space Model for Source Detection in Sequential Hypergraphs Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2505.12910
Source detection on graphs has demonstrated high efficacy in identifying rumor origins. Despite advances in machine learning-based methods, many fail to capture intrinsic dynamics of rumor propagation. In this work, we present SourceDetMamba: A Graph-aware State Space Model for Source Detection in Sequential Hypergraphs, which harnesses the recent success of the state space model Mamba, known for its superior global modeling capabilities and computational efficiency, to address this challenge. Specifically, we first employ hypergraphs to model high-order interactions within social networks. Subsequently, temporal network snapshots generated during the propagation process are sequentially fed in reverse order into Mamba to infer underlying propagation dynamics. Finally, to empower the sequential model to effectively capture propagation patterns while integrating structural information, we propose a novel graph-aware state update mechanism, wherein the state of each node is propagated and refined by both temporal dependencies and topological context. Extensive evaluations on eight datasets demonstrate that SourceDetMamba consistently outperforms state-of-the-art approaches.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2505.12910
- https://arxiv.org/pdf/2505.12910
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4417302298
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4417302298Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2505.12910Digital Object Identifier
- Title
-
SourceDetMamba: A Graph-aware State Space Model for Source Detection in Sequential HypergraphsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-19Full publication date if available
- Authors
-
Le Cheng, Peican Zhu, Yangming Guo, Chao Gao, Zhen Wang, Keke TangList of authors in order
- Landing page
-
https://arxiv.org/abs/2505.12910Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2505.12910Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2505.12910Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4417302298 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2505.12910 |
| ids.doi | https://doi.org/10.48550/arxiv.2505.12910 |
| ids.openalex | https://openalex.org/W4417302298 |
| fwci | |
| type | preprint |
| title | SourceDetMamba: A Graph-aware State Space Model for Source Detection in Sequential Hypergraphs |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2505.12910 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2505.12910 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2505.12910 |
| locations[1].id | doi:10.48550/arxiv.2505.12910 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2505.12910 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5103201157 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7255-5668 |
| authorships[0].author.display_name | Le Cheng |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Cheng, Le |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5038915198 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8389-1093 |
| authorships[1].author.display_name | Peican Zhu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhu, Peican |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5102496940 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Yangming Guo |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Guo, Yangming |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5086236078 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5865-2285 |
| authorships[3].author.display_name | Chao Gao |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Gao, Chao |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100422246 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5007-6327 |
| authorships[4].author.display_name | Zhen Wang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Wang, Zhen |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5047533842 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-0377-1022 |
| authorships[5].author.display_name | Keke Tang |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Tang, Keke |
| authorships[5].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2505.12910 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | SourceDetMamba: A Graph-aware State Space Model for Source Detection in Sequential Hypergraphs |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-14T08:51:11.988532 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2505.12910 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2505.12910 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2505.12910 |
| primary_location.id | pmh:oai:arXiv.org:2505.12910 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2505.12910 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2505.12910 |
| publication_date | 2025-05-19 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 33 |
| abstract_inverted_index.a | 120 |
| abstract_inverted_index.In | 27 |
| abstract_inverted_index.by | 136 |
| abstract_inverted_index.in | 8, 14, 41, 93 |
| abstract_inverted_index.is | 132 |
| abstract_inverted_index.of | 24, 49, 129 |
| abstract_inverted_index.on | 2, 145 |
| abstract_inverted_index.to | 20, 65, 74, 98, 104, 109 |
| abstract_inverted_index.we | 30, 70, 118 |
| abstract_inverted_index.and | 62, 134, 140 |
| abstract_inverted_index.are | 90 |
| abstract_inverted_index.fed | 92 |
| abstract_inverted_index.for | 38, 56 |
| abstract_inverted_index.has | 4 |
| abstract_inverted_index.its | 57 |
| abstract_inverted_index.the | 46, 50, 87, 106, 127 |
| abstract_inverted_index.both | 137 |
| abstract_inverted_index.each | 130 |
| abstract_inverted_index.fail | 19 |
| abstract_inverted_index.high | 6 |
| abstract_inverted_index.into | 96 |
| abstract_inverted_index.many | 18 |
| abstract_inverted_index.node | 131 |
| abstract_inverted_index.that | 149 |
| abstract_inverted_index.this | 28, 67 |
| abstract_inverted_index.Mamba | 97 |
| abstract_inverted_index.Model | 37 |
| abstract_inverted_index.Space | 36 |
| abstract_inverted_index.State | 35 |
| abstract_inverted_index.eight | 146 |
| abstract_inverted_index.first | 71 |
| abstract_inverted_index.infer | 99 |
| abstract_inverted_index.known | 55 |
| abstract_inverted_index.model | 53, 75, 108 |
| abstract_inverted_index.novel | 121 |
| abstract_inverted_index.order | 95 |
| abstract_inverted_index.rumor | 10, 25 |
| abstract_inverted_index.space | 52 |
| abstract_inverted_index.state | 51, 123, 128 |
| abstract_inverted_index.which | 44 |
| abstract_inverted_index.while | 114 |
| abstract_inverted_index.work, | 29 |
| abstract_inverted_index.Mamba, | 54 |
| abstract_inverted_index.Source | 0, 39 |
| abstract_inverted_index.during | 86 |
| abstract_inverted_index.employ | 72 |
| abstract_inverted_index.global | 59 |
| abstract_inverted_index.graphs | 3 |
| abstract_inverted_index.recent | 47 |
| abstract_inverted_index.social | 79 |
| abstract_inverted_index.update | 124 |
| abstract_inverted_index.within | 78 |
| abstract_inverted_index.Despite | 12 |
| abstract_inverted_index.address | 66 |
| abstract_inverted_index.capture | 21, 111 |
| abstract_inverted_index.empower | 105 |
| abstract_inverted_index.machine | 15 |
| abstract_inverted_index.network | 83 |
| abstract_inverted_index.present | 31 |
| abstract_inverted_index.process | 89 |
| abstract_inverted_index.propose | 119 |
| abstract_inverted_index.refined | 135 |
| abstract_inverted_index.reverse | 94 |
| abstract_inverted_index.success | 48 |
| abstract_inverted_index.wherein | 126 |
| abstract_inverted_index.Finally, | 103 |
| abstract_inverted_index.advances | 13 |
| abstract_inverted_index.context. | 142 |
| abstract_inverted_index.datasets | 147 |
| abstract_inverted_index.dynamics | 23 |
| abstract_inverted_index.efficacy | 7 |
| abstract_inverted_index.methods, | 17 |
| abstract_inverted_index.modeling | 60 |
| abstract_inverted_index.origins. | 11 |
| abstract_inverted_index.patterns | 113 |
| abstract_inverted_index.superior | 58 |
| abstract_inverted_index.temporal | 82, 138 |
| abstract_inverted_index.Detection | 40 |
| abstract_inverted_index.Extensive | 143 |
| abstract_inverted_index.detection | 1 |
| abstract_inverted_index.dynamics. | 102 |
| abstract_inverted_index.generated | 85 |
| abstract_inverted_index.harnesses | 45 |
| abstract_inverted_index.intrinsic | 22 |
| abstract_inverted_index.networks. | 80 |
| abstract_inverted_index.snapshots | 84 |
| abstract_inverted_index.Sequential | 42 |
| abstract_inverted_index.challenge. | 68 |
| abstract_inverted_index.high-order | 76 |
| abstract_inverted_index.mechanism, | 125 |
| abstract_inverted_index.propagated | 133 |
| abstract_inverted_index.sequential | 107 |
| abstract_inverted_index.structural | 116 |
| abstract_inverted_index.underlying | 100 |
| abstract_inverted_index.Graph-aware | 34 |
| abstract_inverted_index.approaches. | 154 |
| abstract_inverted_index.demonstrate | 148 |
| abstract_inverted_index.effectively | 110 |
| abstract_inverted_index.efficiency, | 64 |
| abstract_inverted_index.evaluations | 144 |
| abstract_inverted_index.graph-aware | 122 |
| abstract_inverted_index.hypergraphs | 73 |
| abstract_inverted_index.identifying | 9 |
| abstract_inverted_index.integrating | 115 |
| abstract_inverted_index.outperforms | 152 |
| abstract_inverted_index.propagation | 88, 101, 112 |
| abstract_inverted_index.topological | 141 |
| abstract_inverted_index.Hypergraphs, | 43 |
| abstract_inverted_index.capabilities | 61 |
| abstract_inverted_index.consistently | 151 |
| abstract_inverted_index.demonstrated | 5 |
| abstract_inverted_index.dependencies | 139 |
| abstract_inverted_index.information, | 117 |
| abstract_inverted_index.interactions | 77 |
| abstract_inverted_index.propagation. | 26 |
| abstract_inverted_index.sequentially | 91 |
| abstract_inverted_index.Specifically, | 69 |
| abstract_inverted_index.Subsequently, | 81 |
| abstract_inverted_index.computational | 63 |
| abstract_inverted_index.SourceDetMamba | 150 |
| abstract_inverted_index.learning-based | 16 |
| abstract_inverted_index.SourceDetMamba: | 32 |
| abstract_inverted_index.state-of-the-art | 153 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |