Sources of Hallucination by Large Language Models on Inference Tasks Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2305.14552
Large Language Models (LLMs) are claimed to be capable of Natural Language Inference (NLI), necessary for applied tasks like question answering and summarization. We present a series of behavioral studies on several LLM families (LLaMA, GPT-3.5, and PaLM) which probe their behavior using controlled experiments. We establish two biases originating from pretraining which predict much of their behavior, and show that these are major sources of hallucination in generative LLMs. First, memorization at the level of sentences: we show that, regardless of the premise, models falsely label NLI test samples as entailing when the hypothesis is attested in training data, and that entities are used as ``indices'' to access the memorized data. Second, statistical patterns of usage learned at the level of corpora: we further show a similar effect when the premise predicate is less frequent than that of the hypothesis in the training data, a bias following from previous studies. We demonstrate that LLMs perform significantly worse on NLI test samples which do not conform to these biases than those which do, and we offer these as valuable controls for future LLM evaluation.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2305.14552
- https://arxiv.org/pdf/2305.14552
- OA Status
- green
- Cited By
- 17
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4378509483
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4378509483Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2305.14552Digital Object Identifier
- Title
-
Sources of Hallucination by Large Language Models on Inference TasksWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-05-23Full publication date if available
- Authors
-
Nick McKenna, Tianyi Li, Liang Cheng, Mohammad Javad Hosseini, Mark Johnson, Mark SteedmanList of authors in order
- Landing page
-
https://arxiv.org/abs/2305.14552Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2305.14552Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2305.14552Direct OA link when available
- Concepts
-
Inference, Premise, Computer science, Automatic summarization, Memorization, Predicate (mathematical logic), Artificial intelligence, Natural language processing, Test (biology), Sentence, Cognitive psychology, Psychology, Generative model, Generative grammar, Linguistics, Philosophy, Programming language, Biology, PaleontologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
17Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 10, 2023: 4Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4378509483 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2305.14552 |
| ids.doi | https://doi.org/10.48550/arxiv.2305.14552 |
| ids.openalex | https://openalex.org/W4378509483 |
| fwci | |
| type | preprint |
| title | Sources of Hallucination by Large Language Models on Inference Tasks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T10181 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9988999962806702 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Natural Language Processing Techniques |
| topics[2].id | https://openalex.org/T13629 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.983299970626831 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Text Readability and Simplification |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2776214188 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7228958606719971 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[0].display_name | Inference |
| concepts[1].id | https://openalex.org/C2778023277 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6099680066108704 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q321703 |
| concepts[1].display_name | Premise |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5794596672058105 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C170858558 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5767636299133301 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1394144 |
| concepts[3].display_name | Automatic summarization |
| concepts[4].id | https://openalex.org/C30038468 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5364867448806763 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q4354775 |
| concepts[4].display_name | Memorization |
| concepts[5].id | https://openalex.org/C140146324 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4933833181858063 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1144319 |
| concepts[5].display_name | Predicate (mathematical logic) |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4911303222179413 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C204321447 |
| concepts[7].level | 1 |
| concepts[7].score | 0.47939229011535645 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[7].display_name | Natural language processing |
| concepts[8].id | https://openalex.org/C2777267654 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4616739749908447 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3519023 |
| concepts[8].display_name | Test (biology) |
| concepts[9].id | https://openalex.org/C2777530160 |
| concepts[9].level | 2 |
| concepts[9].score | 0.42556071281433105 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q41796 |
| concepts[9].display_name | Sentence |
| concepts[10].id | https://openalex.org/C180747234 |
| concepts[10].level | 1 |
| concepts[10].score | 0.4226149320602417 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q23373 |
| concepts[10].display_name | Cognitive psychology |
| concepts[11].id | https://openalex.org/C15744967 |
| concepts[11].level | 0 |
| concepts[11].score | 0.41859734058380127 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[11].display_name | Psychology |
| concepts[12].id | https://openalex.org/C167966045 |
| concepts[12].level | 3 |
| concepts[12].score | 0.41816383600234985 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q5532625 |
| concepts[12].display_name | Generative model |
| concepts[13].id | https://openalex.org/C39890363 |
| concepts[13].level | 2 |
| concepts[13].score | 0.33329278230667114 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[13].display_name | Generative grammar |
| concepts[14].id | https://openalex.org/C41895202 |
| concepts[14].level | 1 |
| concepts[14].score | 0.2816195487976074 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[14].display_name | Linguistics |
| concepts[15].id | https://openalex.org/C138885662 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[15].display_name | Philosophy |
| concepts[16].id | https://openalex.org/C199360897 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[16].display_name | Programming language |
| concepts[17].id | https://openalex.org/C86803240 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[17].display_name | Biology |
| concepts[18].id | https://openalex.org/C151730666 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[18].display_name | Paleontology |
| keywords[0].id | https://openalex.org/keywords/inference |
| keywords[0].score | 0.7228958606719971 |
| keywords[0].display_name | Inference |
| keywords[1].id | https://openalex.org/keywords/premise |
| keywords[1].score | 0.6099680066108704 |
| keywords[1].display_name | Premise |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5794596672058105 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/automatic-summarization |
| keywords[3].score | 0.5767636299133301 |
| keywords[3].display_name | Automatic summarization |
| keywords[4].id | https://openalex.org/keywords/memorization |
| keywords[4].score | 0.5364867448806763 |
| keywords[4].display_name | Memorization |
| keywords[5].id | https://openalex.org/keywords/predicate |
| keywords[5].score | 0.4933833181858063 |
| keywords[5].display_name | Predicate (mathematical logic) |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.4911303222179413 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/natural-language-processing |
| keywords[7].score | 0.47939229011535645 |
| keywords[7].display_name | Natural language processing |
| keywords[8].id | https://openalex.org/keywords/test |
| keywords[8].score | 0.4616739749908447 |
| keywords[8].display_name | Test (biology) |
| keywords[9].id | https://openalex.org/keywords/sentence |
| keywords[9].score | 0.42556071281433105 |
| keywords[9].display_name | Sentence |
| keywords[10].id | https://openalex.org/keywords/cognitive-psychology |
| keywords[10].score | 0.4226149320602417 |
| keywords[10].display_name | Cognitive psychology |
| keywords[11].id | https://openalex.org/keywords/psychology |
| keywords[11].score | 0.41859734058380127 |
| keywords[11].display_name | Psychology |
| keywords[12].id | https://openalex.org/keywords/generative-model |
| keywords[12].score | 0.41816383600234985 |
| keywords[12].display_name | Generative model |
| keywords[13].id | https://openalex.org/keywords/generative-grammar |
| keywords[13].score | 0.33329278230667114 |
| keywords[13].display_name | Generative grammar |
| keywords[14].id | https://openalex.org/keywords/linguistics |
| keywords[14].score | 0.2816195487976074 |
| keywords[14].display_name | Linguistics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2305.14552 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2305.14552 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2305.14552 |
| locations[1].id | pmh:oai:pure.ed.ac.uk:publications/eac0cd1a-189f-4648-8287-42b76e9bbe8d |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400320 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Edinburgh Research Explorer (University of Edinburgh) |
| locations[1].source.host_organization | https://openalex.org/I98677209 |
| locations[1].source.host_organization_name | University of Edinburgh |
| locations[1].source.host_organization_lineage | https://openalex.org/I98677209 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://arxiv.org/abs/2305.14552 |
| locations[2].id | doi:10.48550/arxiv.2305.14552 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.48550/arxiv.2305.14552 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5023404183 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Nick McKenna |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | McKenna, Nick |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100460612 |
| authorships[1].author.orcid | https://orcid.org/0009-0001-3265-9921 |
| authorships[1].author.display_name | Tianyi Li |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Li, Tianyi |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100384349 |
| authorships[2].author.orcid | https://orcid.org/0009-0004-6962-9285 |
| authorships[2].author.display_name | Liang Cheng |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Cheng, Liang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5101800671 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1377-9274 |
| authorships[3].author.display_name | Mohammad Javad Hosseini |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Hosseini, Mohammad Javad |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5034461489 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4809-8441 |
| authorships[4].author.display_name | Mark Johnson |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Johnson, Mark |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5055023881 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-2509-0797 |
| authorships[5].author.display_name | Mark Steedman |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Steedman, Mark |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2305.14552 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Sources of Hallucination by Large Language Models on Inference Tasks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W4365211920, https://openalex.org/W3014948380, https://openalex.org/W4380551139, https://openalex.org/W4317695495, https://openalex.org/W4387506531, https://openalex.org/W4238433571, https://openalex.org/W3174044702, https://openalex.org/W2967848559, https://openalex.org/W4299831724, https://openalex.org/W4283803360 |
| cited_by_count | 17 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 10 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 4 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:arXiv.org:2305.14552 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2305.14552 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2305.14552 |
| primary_location.id | pmh:oai:arXiv.org:2305.14552 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2305.14552 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2305.14552 |
| publication_date | 2023-05-23 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 25, 126, 145 |
| abstract_inverted_index.We | 23, 45, 151 |
| abstract_inverted_index.as | 90, 105, 177 |
| abstract_inverted_index.at | 72, 118 |
| abstract_inverted_index.be | 7 |
| abstract_inverted_index.do | 163 |
| abstract_inverted_index.in | 67, 97, 141 |
| abstract_inverted_index.is | 95, 133 |
| abstract_inverted_index.of | 9, 27, 55, 65, 75, 81, 115, 121, 138 |
| abstract_inverted_index.on | 30, 158 |
| abstract_inverted_index.to | 6, 107, 166 |
| abstract_inverted_index.we | 77, 123, 174 |
| abstract_inverted_index.LLM | 32, 182 |
| abstract_inverted_index.NLI | 87, 159 |
| abstract_inverted_index.and | 21, 36, 58, 100, 173 |
| abstract_inverted_index.are | 4, 62, 103 |
| abstract_inverted_index.do, | 172 |
| abstract_inverted_index.for | 15, 180 |
| abstract_inverted_index.not | 164 |
| abstract_inverted_index.the | 73, 82, 93, 109, 119, 130, 139, 142 |
| abstract_inverted_index.two | 47 |
| abstract_inverted_index.LLMs | 154 |
| abstract_inverted_index.bias | 146 |
| abstract_inverted_index.from | 50, 148 |
| abstract_inverted_index.less | 134 |
| abstract_inverted_index.like | 18 |
| abstract_inverted_index.much | 54 |
| abstract_inverted_index.show | 59, 78, 125 |
| abstract_inverted_index.test | 88, 160 |
| abstract_inverted_index.than | 136, 169 |
| abstract_inverted_index.that | 60, 101, 137, 153 |
| abstract_inverted_index.used | 104 |
| abstract_inverted_index.when | 92, 129 |
| abstract_inverted_index.LLMs. | 69 |
| abstract_inverted_index.Large | 0 |
| abstract_inverted_index.PaLM) | 37 |
| abstract_inverted_index.data, | 99, 144 |
| abstract_inverted_index.data. | 111 |
| abstract_inverted_index.label | 86 |
| abstract_inverted_index.level | 74, 120 |
| abstract_inverted_index.major | 63 |
| abstract_inverted_index.offer | 175 |
| abstract_inverted_index.probe | 39 |
| abstract_inverted_index.tasks | 17 |
| abstract_inverted_index.that, | 79 |
| abstract_inverted_index.their | 40, 56 |
| abstract_inverted_index.these | 61, 167, 176 |
| abstract_inverted_index.those | 170 |
| abstract_inverted_index.usage | 116 |
| abstract_inverted_index.using | 42 |
| abstract_inverted_index.which | 38, 52, 162, 171 |
| abstract_inverted_index.worse | 157 |
| abstract_inverted_index.(LLMs) | 3 |
| abstract_inverted_index.(NLI), | 13 |
| abstract_inverted_index.First, | 70 |
| abstract_inverted_index.Models | 2 |
| abstract_inverted_index.access | 108 |
| abstract_inverted_index.biases | 48, 168 |
| abstract_inverted_index.effect | 128 |
| abstract_inverted_index.future | 181 |
| abstract_inverted_index.models | 84 |
| abstract_inverted_index.series | 26 |
| abstract_inverted_index.(LLaMA, | 34 |
| abstract_inverted_index.Natural | 10 |
| abstract_inverted_index.Second, | 112 |
| abstract_inverted_index.applied | 16 |
| abstract_inverted_index.capable | 8 |
| abstract_inverted_index.claimed | 5 |
| abstract_inverted_index.conform | 165 |
| abstract_inverted_index.falsely | 85 |
| abstract_inverted_index.further | 124 |
| abstract_inverted_index.learned | 117 |
| abstract_inverted_index.perform | 155 |
| abstract_inverted_index.predict | 53 |
| abstract_inverted_index.premise | 131 |
| abstract_inverted_index.present | 24 |
| abstract_inverted_index.samples | 89, 161 |
| abstract_inverted_index.several | 31 |
| abstract_inverted_index.similar | 127 |
| abstract_inverted_index.sources | 64 |
| abstract_inverted_index.studies | 29 |
| abstract_inverted_index.GPT-3.5, | 35 |
| abstract_inverted_index.Language | 1, 11 |
| abstract_inverted_index.attested | 96 |
| abstract_inverted_index.behavior | 41 |
| abstract_inverted_index.controls | 179 |
| abstract_inverted_index.corpora: | 122 |
| abstract_inverted_index.entities | 102 |
| abstract_inverted_index.families | 33 |
| abstract_inverted_index.frequent | 135 |
| abstract_inverted_index.patterns | 114 |
| abstract_inverted_index.premise, | 83 |
| abstract_inverted_index.previous | 149 |
| abstract_inverted_index.question | 19 |
| abstract_inverted_index.studies. | 150 |
| abstract_inverted_index.training | 98, 143 |
| abstract_inverted_index.valuable | 178 |
| abstract_inverted_index.Inference | 12 |
| abstract_inverted_index.answering | 20 |
| abstract_inverted_index.behavior, | 57 |
| abstract_inverted_index.entailing | 91 |
| abstract_inverted_index.establish | 46 |
| abstract_inverted_index.following | 147 |
| abstract_inverted_index.memorized | 110 |
| abstract_inverted_index.necessary | 14 |
| abstract_inverted_index.predicate | 132 |
| abstract_inverted_index.behavioral | 28 |
| abstract_inverted_index.controlled | 43 |
| abstract_inverted_index.generative | 68 |
| abstract_inverted_index.hypothesis | 94, 140 |
| abstract_inverted_index.regardless | 80 |
| abstract_inverted_index.sentences: | 76 |
| abstract_inverted_index.``indices'' | 106 |
| abstract_inverted_index.demonstrate | 152 |
| abstract_inverted_index.evaluation. | 183 |
| abstract_inverted_index.originating | 49 |
| abstract_inverted_index.pretraining | 51 |
| abstract_inverted_index.statistical | 113 |
| abstract_inverted_index.experiments. | 44 |
| abstract_inverted_index.memorization | 71 |
| abstract_inverted_index.hallucination | 66 |
| abstract_inverted_index.significantly | 156 |
| abstract_inverted_index.summarization. | 22 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.550000011920929 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile |