Sources of Information Waste in Neuroimaging: Mishandling Structures, Thinking Dichotomously, and Over-Reducing Data Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.52294/2e179dbf-5e37-4338-a639-9ceb92b055ea
Neuroimaging relies on separate statistical inferences at tens of thousands of spatial locations. Such massively univariate analysis typically requires an adjustment for multiple testing in an attempt to maintain the family-wise error rate at a nominal level of 5%. First, we examine three sources of substantial information loss that are associated with the common practice under the massively univariate framework: (a) the hierarchical data structures (spatial units and trials) are not well maintained in the modeling process; (b) the adjustment for multiple testing leads to an artificial step of strict thresholding; (c) information is excessively reduced during both modeling and result reporting. These sources of information loss have far-reaching impacts on result interpretability as well as reproducibility in neuroimaging. Second, to improve inference efficiency, predictive accuracy, and generalizability, we propose a Bayesian multilevel modeling framework that closely characterizes the data hierarchies across spatial units and experimental trials. Rather than analyzing the data in a way that first creates multiplicity and then resorts to a post hoc solution to address them, we suggest directly incorporating the cross-space information into one single model under the Bayesian framework (so there is no multiplicity issue). Third, regardless of the modeling framework one adopts, we make four actionable suggestions to alleviate information waste and to improve reproducibility: (1) model data hierarchies, (2) quantify effects, (3) abandon strict dichotomization, and (4) report full results. We provide examples for all of these points using both demo and real studies, including the recent Neuroimaging Analysis Replication and Prediction Study (NARPS).
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.52294/2e179dbf-5e37-4338-a639-9ceb92b055ea
- OA Status
- diamond
- Cited By
- 2
- References
- 61
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4220838865
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4220838865Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.52294/2e179dbf-5e37-4338-a639-9ceb92b055eaDigital Object Identifier
- Title
-
Sources of Information Waste in Neuroimaging: Mishandling Structures, Thinking Dichotomously, and Over-Reducing DataWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-03-01Full publication date if available
- Authors
-
Gang Chen, Paul A. Taylor, Joel Stoddard, Robert W. Cox, Peter A. Bandettini, Luiz PessoaList of authors in order
- Landing page
-
https://doi.org/10.52294/2e179dbf-5e37-4338-a639-9ceb92b055eaPublisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.52294/2e179dbf-5e37-4338-a639-9ceb92b055eaDirect OA link when available
- Concepts
-
Computer science, Neuroimaging, Bayesian probability, Inference, Data mining, Univariate, Generalizability theory, Bayesian inference, Interpretability, Machine learning, Data science, Artificial intelligence, Statistics, Psychology, Mathematics, Multivariate statistics, PsychiatryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 2Per-year citation counts (last 5 years)
- References (count)
-
61Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4220838865 |
|---|---|
| doi | https://doi.org/10.52294/2e179dbf-5e37-4338-a639-9ceb92b055ea |
| ids.doi | https://doi.org/10.52294/2e179dbf-5e37-4338-a639-9ceb92b055ea |
| ids.openalex | https://openalex.org/W4220838865 |
| fwci | 0.83488166 |
| type | article |
| title | Sources of Information Waste in Neuroimaging: Mishandling Structures, Thinking Dichotomously, and Over-Reducing Data |
| biblio.issue | 5 |
| biblio.volume | 2021 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11235 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9983999729156494 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Statistical Methods in Clinical Trials |
| topics[1].id | https://openalex.org/T10243 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9980999827384949 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2613 |
| topics[1].subfield.display_name | Statistics and Probability |
| topics[1].display_name | Statistical Methods and Bayesian Inference |
| topics[2].id | https://openalex.org/T10206 |
| topics[2].field.id | https://openalex.org/fields/18 |
| topics[2].field.display_name | Decision Sciences |
| topics[2].score | 0.9979000091552734 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1804 |
| topics[2].subfield.display_name | Statistics, Probability and Uncertainty |
| topics[2].display_name | Meta-analysis and systematic reviews |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7426053285598755 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C58693492 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6063509583473206 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q551875 |
| concepts[1].display_name | Neuroimaging |
| concepts[2].id | https://openalex.org/C107673813 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5383326411247253 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[2].display_name | Bayesian probability |
| concepts[3].id | https://openalex.org/C2776214188 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5377393364906311 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[3].display_name | Inference |
| concepts[4].id | https://openalex.org/C124101348 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5128891468048096 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[4].display_name | Data mining |
| concepts[5].id | https://openalex.org/C199163554 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5021893978118896 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1681619 |
| concepts[5].display_name | Univariate |
| concepts[6].id | https://openalex.org/C27158222 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4954887628555298 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5532422 |
| concepts[6].display_name | Generalizability theory |
| concepts[7].id | https://openalex.org/C160234255 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4235548973083496 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q812535 |
| concepts[7].display_name | Bayesian inference |
| concepts[8].id | https://openalex.org/C2781067378 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4228593111038208 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q17027399 |
| concepts[8].display_name | Interpretability |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4149405360221863 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C2522767166 |
| concepts[10].level | 1 |
| concepts[10].score | 0.4140078127384186 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[10].display_name | Data science |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.40274786949157715 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C105795698 |
| concepts[12].level | 1 |
| concepts[12].score | 0.17278817296028137 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[12].display_name | Statistics |
| concepts[13].id | https://openalex.org/C15744967 |
| concepts[13].level | 0 |
| concepts[13].score | 0.14947155117988586 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[13].display_name | Psychology |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.09598761796951294 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C161584116 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1952580 |
| concepts[15].display_name | Multivariate statistics |
| concepts[16].id | https://openalex.org/C118552586 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7867 |
| concepts[16].display_name | Psychiatry |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7426053285598755 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/neuroimaging |
| keywords[1].score | 0.6063509583473206 |
| keywords[1].display_name | Neuroimaging |
| keywords[2].id | https://openalex.org/keywords/bayesian-probability |
| keywords[2].score | 0.5383326411247253 |
| keywords[2].display_name | Bayesian probability |
| keywords[3].id | https://openalex.org/keywords/inference |
| keywords[3].score | 0.5377393364906311 |
| keywords[3].display_name | Inference |
| keywords[4].id | https://openalex.org/keywords/data-mining |
| keywords[4].score | 0.5128891468048096 |
| keywords[4].display_name | Data mining |
| keywords[5].id | https://openalex.org/keywords/univariate |
| keywords[5].score | 0.5021893978118896 |
| keywords[5].display_name | Univariate |
| keywords[6].id | https://openalex.org/keywords/generalizability-theory |
| keywords[6].score | 0.4954887628555298 |
| keywords[6].display_name | Generalizability theory |
| keywords[7].id | https://openalex.org/keywords/bayesian-inference |
| keywords[7].score | 0.4235548973083496 |
| keywords[7].display_name | Bayesian inference |
| keywords[8].id | https://openalex.org/keywords/interpretability |
| keywords[8].score | 0.4228593111038208 |
| keywords[8].display_name | Interpretability |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.4149405360221863 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/data-science |
| keywords[10].score | 0.4140078127384186 |
| keywords[10].display_name | Data science |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.40274786949157715 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/statistics |
| keywords[12].score | 0.17278817296028137 |
| keywords[12].display_name | Statistics |
| keywords[13].id | https://openalex.org/keywords/psychology |
| keywords[13].score | 0.14947155117988586 |
| keywords[13].display_name | Psychology |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.09598761796951294 |
| keywords[14].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.52294/2e179dbf-5e37-4338-a639-9ceb92b055ea |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4387281425 |
| locations[0].source.issn | 2957-3963 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2957-3963 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Aperture Neuro |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Aperture Neuro |
| locations[0].landing_page_url | https://doi.org/10.52294/2e179dbf-5e37-4338-a639-9ceb92b055ea |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100389256 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2960-089X |
| authorships[0].author.display_name | Gang Chen |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1299303238 |
| authorships[0].affiliations[0].raw_affiliation_string | Scientific and Statistical Computing Core, NIMH, National Institutes of Health, Bethesda, MD, USA |
| authorships[0].institutions[0].id | https://openalex.org/I1299303238 |
| authorships[0].institutions[0].ror | https://ror.org/01cwqze88 |
| authorships[0].institutions[0].type | government |
| authorships[0].institutions[0].lineage | https://openalex.org/I1299022934, https://openalex.org/I1299303238 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | National Institutes of Health |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Gang Chen |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Scientific and Statistical Computing Core, NIMH, National Institutes of Health, Bethesda, MD, USA |
| authorships[1].author.id | https://openalex.org/A5005787322 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0488-6796 |
| authorships[1].author.display_name | Paul A. Taylor |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1299303238 |
| authorships[1].affiliations[0].raw_affiliation_string | Scientific and Statistical Computing Core, NIMH, National Institutes of Health, Bethesda, MD, USA |
| authorships[1].institutions[0].id | https://openalex.org/I1299303238 |
| authorships[1].institutions[0].ror | https://ror.org/01cwqze88 |
| authorships[1].institutions[0].type | government |
| authorships[1].institutions[0].lineage | https://openalex.org/I1299022934, https://openalex.org/I1299303238 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | National Institutes of Health |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Paul A. Taylor |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Scientific and Statistical Computing Core, NIMH, National Institutes of Health, Bethesda, MD, USA |
| authorships[2].author.id | https://openalex.org/A5083896287 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4070-4566 |
| authorships[2].author.display_name | Joel Stoddard |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I51713134, https://openalex.org/I921990950 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Psychiatry, University of Colorado, Aurora, CO, USA |
| authorships[2].institutions[0].id | https://openalex.org/I51713134 |
| authorships[2].institutions[0].ror | https://ror.org/03wmf1y16 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I51713134 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Colorado Anschutz Medical Campus |
| authorships[2].institutions[1].id | https://openalex.org/I921990950 |
| authorships[2].institutions[1].ror | https://ror.org/02hh7en24 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I921990950 |
| authorships[2].institutions[1].country_code | US |
| authorships[2].institutions[1].display_name | University of Colorado Denver |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Joel Stoddard |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Psychiatry, University of Colorado, Aurora, CO, USA |
| authorships[3].author.id | https://openalex.org/A5062395162 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0031-1568 |
| authorships[3].author.display_name | Robert W. Cox |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I1299303238 |
| authorships[3].affiliations[0].raw_affiliation_string | Scientific and Statistical Computing Core, NIMH, National Institutes of Health, Bethesda, MD, USA |
| authorships[3].institutions[0].id | https://openalex.org/I1299303238 |
| authorships[3].institutions[0].ror | https://ror.org/01cwqze88 |
| authorships[3].institutions[0].type | government |
| authorships[3].institutions[0].lineage | https://openalex.org/I1299022934, https://openalex.org/I1299303238 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | National Institutes of Health |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Robert W. Cox |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Scientific and Statistical Computing Core, NIMH, National Institutes of Health, Bethesda, MD, USA |
| authorships[4].author.id | https://openalex.org/A5036171512 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-9038-4746 |
| authorships[4].author.display_name | Peter A. Bandettini |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I1299303238 |
| authorships[4].affiliations[0].raw_affiliation_string | Section on Functional Imaging Methods, NIMH, National Institutes of Health, Bethesda, MD, USA |
| authorships[4].institutions[0].id | https://openalex.org/I1299303238 |
| authorships[4].institutions[0].ror | https://ror.org/01cwqze88 |
| authorships[4].institutions[0].type | government |
| authorships[4].institutions[0].lineage | https://openalex.org/I1299022934, https://openalex.org/I1299303238 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | National Institutes of Health |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Peter A. Bandettini |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Section on Functional Imaging Methods, NIMH, National Institutes of Health, Bethesda, MD, USA |
| authorships[5].author.id | https://openalex.org/A5000010988 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-4696-6903 |
| authorships[5].author.display_name | Luiz Pessoa |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I66946132 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Psychology, Department of Electrical and Computer Engineering, and Maryland Neuroimaging Center, University of Maryland, College Park, MD, USA |
| authorships[5].institutions[0].id | https://openalex.org/I66946132 |
| authorships[5].institutions[0].ror | https://ror.org/047s2c258 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I66946132 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | University of Maryland, College Park |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Luiz Pessoa |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Psychology, Department of Electrical and Computer Engineering, and Maryland Neuroimaging Center, University of Maryland, College Park, MD, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.52294/2e179dbf-5e37-4338-a639-9ceb92b055ea |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Sources of Information Waste in Neuroimaging: Mishandling Structures, Thinking Dichotomously, and Over-Reducing Data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11235 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9983999729156494 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Statistical Methods in Clinical Trials |
| related_works | https://openalex.org/W2905433371, https://openalex.org/W4361193272, https://openalex.org/W4310278675, https://openalex.org/W2806259446, https://openalex.org/W2963326959, https://openalex.org/W2118717649, https://openalex.org/W4247136043, https://openalex.org/W1958015814, https://openalex.org/W4312407344, https://openalex.org/W4378220270 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.52294/2e179dbf-5e37-4338-a639-9ceb92b055ea |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4387281425 |
| best_oa_location.source.issn | 2957-3963 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2957-3963 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Aperture Neuro |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Aperture Neuro |
| best_oa_location.landing_page_url | https://doi.org/10.52294/2e179dbf-5e37-4338-a639-9ceb92b055ea |
| primary_location.id | doi:10.52294/2e179dbf-5e37-4338-a639-9ceb92b055ea |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4387281425 |
| primary_location.source.issn | 2957-3963 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2957-3963 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Aperture Neuro |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Aperture Neuro |
| primary_location.landing_page_url | https://doi.org/10.52294/2e179dbf-5e37-4338-a639-9ceb92b055ea |
| publication_date | 2022-03-01 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2479350029, https://openalex.org/W2051691068, https://openalex.org/W2044634376, https://openalex.org/W2046557060, https://openalex.org/W2134305330, https://openalex.org/W2169463832, https://openalex.org/W2986146075, https://openalex.org/W2944676855, https://openalex.org/W4248681815, https://openalex.org/W2924950986, https://openalex.org/W3139007579, https://openalex.org/W2119303750, https://openalex.org/W2018742491, https://openalex.org/W2293040502, https://openalex.org/W2167415089, https://openalex.org/W2923400604, https://openalex.org/W2609984900, https://openalex.org/W2154449833, https://openalex.org/W2029671471, https://openalex.org/W2952384350, https://openalex.org/W2149719430, https://openalex.org/W2105090664, https://openalex.org/W2785114431, https://openalex.org/W2893980603, https://openalex.org/W3210230948, https://openalex.org/W2951354032, https://openalex.org/W3011348916, https://openalex.org/W3021752304, https://openalex.org/W3041613674, https://openalex.org/W109386094, https://openalex.org/W2162888823, https://openalex.org/W1913823733, https://openalex.org/W2083599439, https://openalex.org/W4232976691, https://openalex.org/W2900101937, https://openalex.org/W2801251405, https://openalex.org/W2807243083, https://openalex.org/W2965053852, https://openalex.org/W2884558895, https://openalex.org/W1976994512, https://openalex.org/W2131481495, https://openalex.org/W1991237518, https://openalex.org/W2169005503, https://openalex.org/W2138266733, https://openalex.org/W2071415508, https://openalex.org/W3158267102, https://openalex.org/W3136237691, https://openalex.org/W2018102971, https://openalex.org/W3153109663, https://openalex.org/W2087720347, https://openalex.org/W2895108013, https://openalex.org/W2116581177, https://openalex.org/W2032946087, https://openalex.org/W2950086410, https://openalex.org/W3094438142, https://openalex.org/W2724821146, https://openalex.org/W3032707732, https://openalex.org/W3185289947, https://openalex.org/W2950996173, https://openalex.org/W1849956890, https://openalex.org/W2155624710 |
| referenced_works_count | 61 |
| abstract_inverted_index.a | 34, 130, 153, 163 |
| abstract_inverted_index.We | 228 |
| abstract_inverted_index.an | 19, 25, 85 |
| abstract_inverted_index.as | 113, 115 |
| abstract_inverted_index.at | 6, 33 |
| abstract_inverted_index.in | 24, 73, 117, 152 |
| abstract_inverted_index.is | 93, 187 |
| abstract_inverted_index.no | 188 |
| abstract_inverted_index.of | 8, 10, 37, 44, 88, 104, 193, 233 |
| abstract_inverted_index.on | 2, 110 |
| abstract_inverted_index.to | 27, 84, 120, 162, 167, 204, 209 |
| abstract_inverted_index.we | 40, 128, 170, 199 |
| abstract_inverted_index.(1) | 212 |
| abstract_inverted_index.(2) | 216 |
| abstract_inverted_index.(3) | 219 |
| abstract_inverted_index.(4) | 224 |
| abstract_inverted_index.(a) | 60 |
| abstract_inverted_index.(b) | 77 |
| abstract_inverted_index.(c) | 91 |
| abstract_inverted_index.(so | 185 |
| abstract_inverted_index.5%. | 38 |
| abstract_inverted_index.all | 232 |
| abstract_inverted_index.and | 67, 99, 126, 144, 159, 208, 223, 239, 248 |
| abstract_inverted_index.are | 49, 69 |
| abstract_inverted_index.for | 21, 80, 231 |
| abstract_inverted_index.hoc | 165 |
| abstract_inverted_index.not | 70 |
| abstract_inverted_index.one | 178, 197 |
| abstract_inverted_index.the | 29, 52, 56, 61, 74, 78, 138, 150, 174, 182, 194, 243 |
| abstract_inverted_index.way | 154 |
| abstract_inverted_index.Such | 13 |
| abstract_inverted_index.both | 97, 237 |
| abstract_inverted_index.data | 63, 139, 151, 214 |
| abstract_inverted_index.demo | 238 |
| abstract_inverted_index.four | 201 |
| abstract_inverted_index.full | 226 |
| abstract_inverted_index.have | 107 |
| abstract_inverted_index.into | 177 |
| abstract_inverted_index.loss | 47, 106 |
| abstract_inverted_index.make | 200 |
| abstract_inverted_index.post | 164 |
| abstract_inverted_index.rate | 32 |
| abstract_inverted_index.real | 240 |
| abstract_inverted_index.step | 87 |
| abstract_inverted_index.tens | 7 |
| abstract_inverted_index.than | 148 |
| abstract_inverted_index.that | 48, 135, 155 |
| abstract_inverted_index.then | 160 |
| abstract_inverted_index.well | 71, 114 |
| abstract_inverted_index.with | 51 |
| abstract_inverted_index.Study | 250 |
| abstract_inverted_index.These | 102 |
| abstract_inverted_index.error | 31 |
| abstract_inverted_index.first | 156 |
| abstract_inverted_index.leads | 83 |
| abstract_inverted_index.level | 36 |
| abstract_inverted_index.model | 180, 213 |
| abstract_inverted_index.them, | 169 |
| abstract_inverted_index.there | 186 |
| abstract_inverted_index.these | 234 |
| abstract_inverted_index.three | 42 |
| abstract_inverted_index.under | 55, 181 |
| abstract_inverted_index.units | 66, 143 |
| abstract_inverted_index.using | 236 |
| abstract_inverted_index.waste | 207 |
| abstract_inverted_index.First, | 39 |
| abstract_inverted_index.Rather | 147 |
| abstract_inverted_index.Third, | 191 |
| abstract_inverted_index.across | 141 |
| abstract_inverted_index.common | 53 |
| abstract_inverted_index.during | 96 |
| abstract_inverted_index.points | 235 |
| abstract_inverted_index.recent | 244 |
| abstract_inverted_index.relies | 1 |
| abstract_inverted_index.report | 225 |
| abstract_inverted_index.result | 100, 111 |
| abstract_inverted_index.single | 179 |
| abstract_inverted_index.strict | 89, 221 |
| abstract_inverted_index.Second, | 119 |
| abstract_inverted_index.abandon | 220 |
| abstract_inverted_index.address | 168 |
| abstract_inverted_index.adopts, | 198 |
| abstract_inverted_index.attempt | 26 |
| abstract_inverted_index.closely | 136 |
| abstract_inverted_index.creates | 157 |
| abstract_inverted_index.examine | 41 |
| abstract_inverted_index.impacts | 109 |
| abstract_inverted_index.improve | 121, 210 |
| abstract_inverted_index.issue). | 190 |
| abstract_inverted_index.nominal | 35 |
| abstract_inverted_index.propose | 129 |
| abstract_inverted_index.provide | 229 |
| abstract_inverted_index.reduced | 95 |
| abstract_inverted_index.resorts | 161 |
| abstract_inverted_index.sources | 43, 103 |
| abstract_inverted_index.spatial | 11, 142 |
| abstract_inverted_index.suggest | 171 |
| abstract_inverted_index.testing | 23, 82 |
| abstract_inverted_index.trials) | 68 |
| abstract_inverted_index.trials. | 146 |
| abstract_inverted_index.(NARPS). | 251 |
| abstract_inverted_index.(spatial | 65 |
| abstract_inverted_index.Analysis | 246 |
| abstract_inverted_index.Bayesian | 131, 183 |
| abstract_inverted_index.analysis | 16 |
| abstract_inverted_index.directly | 172 |
| abstract_inverted_index.effects, | 218 |
| abstract_inverted_index.examples | 230 |
| abstract_inverted_index.maintain | 28 |
| abstract_inverted_index.modeling | 75, 98, 133, 195 |
| abstract_inverted_index.multiple | 22, 81 |
| abstract_inverted_index.practice | 54 |
| abstract_inverted_index.process; | 76 |
| abstract_inverted_index.quantify | 217 |
| abstract_inverted_index.requires | 18 |
| abstract_inverted_index.results. | 227 |
| abstract_inverted_index.separate | 3 |
| abstract_inverted_index.solution | 166 |
| abstract_inverted_index.studies, | 241 |
| abstract_inverted_index.accuracy, | 125 |
| abstract_inverted_index.alleviate | 205 |
| abstract_inverted_index.analyzing | 149 |
| abstract_inverted_index.framework | 134, 184, 196 |
| abstract_inverted_index.including | 242 |
| abstract_inverted_index.inference | 122 |
| abstract_inverted_index.massively | 14, 57 |
| abstract_inverted_index.thousands | 9 |
| abstract_inverted_index.typically | 17 |
| abstract_inverted_index.Prediction | 249 |
| abstract_inverted_index.actionable | 202 |
| abstract_inverted_index.adjustment | 20, 79 |
| abstract_inverted_index.artificial | 86 |
| abstract_inverted_index.associated | 50 |
| abstract_inverted_index.framework: | 59 |
| abstract_inverted_index.inferences | 5 |
| abstract_inverted_index.locations. | 12 |
| abstract_inverted_index.maintained | 72 |
| abstract_inverted_index.multilevel | 132 |
| abstract_inverted_index.predictive | 124 |
| abstract_inverted_index.regardless | 192 |
| abstract_inverted_index.reporting. | 101 |
| abstract_inverted_index.structures | 64 |
| abstract_inverted_index.univariate | 15, 58 |
| abstract_inverted_index.Replication | 247 |
| abstract_inverted_index.cross-space | 175 |
| abstract_inverted_index.efficiency, | 123 |
| abstract_inverted_index.excessively | 94 |
| abstract_inverted_index.family-wise | 30 |
| abstract_inverted_index.hierarchies | 140 |
| abstract_inverted_index.information | 46, 92, 105, 176, 206 |
| abstract_inverted_index.statistical | 4 |
| abstract_inverted_index.substantial | 45 |
| abstract_inverted_index.suggestions | 203 |
| abstract_inverted_index.Neuroimaging | 0, 245 |
| abstract_inverted_index.experimental | 145 |
| abstract_inverted_index.far-reaching | 108 |
| abstract_inverted_index.hierarchical | 62 |
| abstract_inverted_index.hierarchies, | 215 |
| abstract_inverted_index.multiplicity | 158, 189 |
| abstract_inverted_index.characterizes | 137 |
| abstract_inverted_index.incorporating | 173 |
| abstract_inverted_index.neuroimaging. | 118 |
| abstract_inverted_index.thresholding; | 90 |
| abstract_inverted_index.reproducibility | 116 |
| abstract_inverted_index.dichotomization, | 222 |
| abstract_inverted_index.interpretability | 112 |
| abstract_inverted_index.reproducibility: | 211 |
| abstract_inverted_index.generalizability, | 127 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 94 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.64756989 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |