Soybean Disease Detection and Segmentation Based on Mask-RCNN Algorithm Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.9734/jeai/2023/v45i52132
Anthracnose, frogeye leaf spot (FLS), rhizoctonia aerial blight (RAB), soybean mosaic virus (SMV), and yellow mosaic virus (YMV) of soybean are major common soybean leaf diseases that seriously affect soybean yield in India. However, the existing system needs a real-time detection method for soybean leaf diseases, which will help to take appropriate action for disease cure with minimum losses. This study studied a real-time detector for soybean leaf diseases based on deep convolutional neural networks. The 3,127 RGB images of disease-free leaves, anthracnose, FLS, RAB, SMV, and YMV-affected leaves of soybean were collected from the agriculture fields. The Mask R-CNN detection algorithm was used for the detection of soybean leaf diseases by introducing the Res Net 50 module. The pre-processed images (512×512 pixels) were used as input in Mask R-CNN. The model was trained at a number of epochs, training step per epoch training & validation, and learning rate were 80, 500, 50, 8, and 0.001, respectively. The detection accuracy was calculated at three levels of minimum detection confidence i.e. 0.80, 0.85, and 0.90. The results indicate that the maximum detection accuracy i.e. greater than 85% at 0.90 level of minimum detection confidence. This research indicates that the real-time detector based on deep learning provides a feasible solution for diagnosing soybean leaf diseases and provides guidance for the detection of other plant diseases. In addition to that the application of pesticide in the early stage reduce the use of pesticide resulting in less environmental pollution.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.9734/jeai/2023/v45i52132
- https://journaljeai.com/index.php/JEAI/article/download/2132/4262
- OA Status
- diamond
- Cited By
- 11
- References
- 12
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4372348793
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4372348793Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.9734/jeai/2023/v45i52132Digital Object Identifier
- Title
-
Soybean Disease Detection and Segmentation Based on Mask-RCNN AlgorithmWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-04-05Full publication date if available
- Authors
-
Manish Kumar, Narendra Singh Chandel, Dushyant Singh, Laxman Singh RajputList of authors in order
- Landing page
-
https://doi.org/10.9734/jeai/2023/v45i52132Publisher landing page
- PDF URL
-
https://journaljeai.com/index.php/JEAI/article/download/2132/4262Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://journaljeai.com/index.php/JEAI/article/download/2132/4262Direct OA link when available
- Concepts
-
Artificial intelligence, Blight, Soybean mosaic virus, Segmentation, Leaf spot, Algorithm, Computer science, Mathematics, Horticulture, Biology, Plant virus, Virus, Virology, PotyvirusTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
11Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 8, 2024: 3Per-year citation counts (last 5 years)
- References (count)
-
12Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4372348793 |
|---|---|
| doi | https://doi.org/10.9734/jeai/2023/v45i52132 |
| ids.doi | https://doi.org/10.9734/jeai/2023/v45i52132 |
| ids.openalex | https://openalex.org/W4372348793 |
| fwci | 2.90598256 |
| type | article |
| title | Soybean Disease Detection and Segmentation Based on Mask-RCNN Algorithm |
| biblio.issue | 5 |
| biblio.volume | 45 |
| biblio.last_page | 72 |
| biblio.first_page | 63 |
| topics[0].id | https://openalex.org/T10616 |
| topics[0].field.id | https://openalex.org/fields/11 |
| topics[0].field.display_name | Agricultural and Biological Sciences |
| topics[0].score | 0.983299970626831 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1110 |
| topics[0].subfield.display_name | Plant Science |
| topics[0].display_name | Smart Agriculture and AI |
| topics[1].id | https://openalex.org/T12660 |
| topics[1].field.id | https://openalex.org/fields/11 |
| topics[1].field.display_name | Agricultural and Biological Sciences |
| topics[1].score | 0.9782000184059143 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1110 |
| topics[1].subfield.display_name | Plant Science |
| topics[1].display_name | Plant Disease Management Techniques |
| topics[2].id | https://openalex.org/T10494 |
| topics[2].field.id | https://openalex.org/fields/11 |
| topics[2].field.display_name | Agricultural and Biological Sciences |
| topics[2].score | 0.9519000053405762 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1110 |
| topics[2].subfield.display_name | Plant Science |
| topics[2].display_name | Plant Virus Research Studies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.5163687467575073 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C182076605 |
| concepts[1].level | 2 |
| concepts[1].score | 0.47305384278297424 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q4273292 |
| concepts[1].display_name | Blight |
| concepts[2].id | https://openalex.org/C2777410846 |
| concepts[2].level | 5 |
| concepts[2].score | 0.45671287178993225 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7572014 |
| concepts[2].display_name | Soybean mosaic virus |
| concepts[3].id | https://openalex.org/C89600930 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4530366361141205 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[3].display_name | Segmentation |
| concepts[4].id | https://openalex.org/C2780034373 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4254835247993469 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q6508875 |
| concepts[4].display_name | Leaf spot |
| concepts[5].id | https://openalex.org/C11413529 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3821072280406952 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[5].display_name | Algorithm |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.3767514228820801 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.3247360587120056 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C144027150 |
| concepts[8].level | 1 |
| concepts[8].score | 0.32457005977630615 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q48803 |
| concepts[8].display_name | Horticulture |
| concepts[9].id | https://openalex.org/C86803240 |
| concepts[9].level | 0 |
| concepts[9].score | 0.2674459218978882 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[9].display_name | Biology |
| concepts[10].id | https://openalex.org/C109110057 |
| concepts[10].level | 3 |
| concepts[10].score | 0.1934855580329895 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1495434 |
| concepts[10].display_name | Plant virus |
| concepts[11].id | https://openalex.org/C2522874641 |
| concepts[11].level | 2 |
| concepts[11].score | 0.10421472787857056 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q808 |
| concepts[11].display_name | Virus |
| concepts[12].id | https://openalex.org/C159047783 |
| concepts[12].level | 1 |
| concepts[12].score | 0.07032144069671631 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7215 |
| concepts[12].display_name | Virology |
| concepts[13].id | https://openalex.org/C2776625791 |
| concepts[13].level | 4 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q3400142 |
| concepts[13].display_name | Potyvirus |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.5163687467575073 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/blight |
| keywords[1].score | 0.47305384278297424 |
| keywords[1].display_name | Blight |
| keywords[2].id | https://openalex.org/keywords/soybean-mosaic-virus |
| keywords[2].score | 0.45671287178993225 |
| keywords[2].display_name | Soybean mosaic virus |
| keywords[3].id | https://openalex.org/keywords/segmentation |
| keywords[3].score | 0.4530366361141205 |
| keywords[3].display_name | Segmentation |
| keywords[4].id | https://openalex.org/keywords/leaf-spot |
| keywords[4].score | 0.4254835247993469 |
| keywords[4].display_name | Leaf spot |
| keywords[5].id | https://openalex.org/keywords/algorithm |
| keywords[5].score | 0.3821072280406952 |
| keywords[5].display_name | Algorithm |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.3767514228820801 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.3247360587120056 |
| keywords[7].display_name | Mathematics |
| keywords[8].id | https://openalex.org/keywords/horticulture |
| keywords[8].score | 0.32457005977630615 |
| keywords[8].display_name | Horticulture |
| keywords[9].id | https://openalex.org/keywords/biology |
| keywords[9].score | 0.2674459218978882 |
| keywords[9].display_name | Biology |
| keywords[10].id | https://openalex.org/keywords/plant-virus |
| keywords[10].score | 0.1934855580329895 |
| keywords[10].display_name | Plant virus |
| keywords[11].id | https://openalex.org/keywords/virus |
| keywords[11].score | 0.10421472787857056 |
| keywords[11].display_name | Virus |
| keywords[12].id | https://openalex.org/keywords/virology |
| keywords[12].score | 0.07032144069671631 |
| keywords[12].display_name | Virology |
| language | en |
| locations[0].id | doi:10.9734/jeai/2023/v45i52132 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210169779 |
| locations[0].source.issn | 2457-0591 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2457-0591 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Experimental Agriculture International |
| locations[0].source.host_organization | https://openalex.org/P4310320855 |
| locations[0].source.host_organization_name | Sciencedomain International |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320855 |
| locations[0].source.host_organization_lineage_names | Sciencedomain International |
| locations[0].license | |
| locations[0].pdf_url | https://journaljeai.com/index.php/JEAI/article/download/2132/4262 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Experimental Agriculture International |
| locations[0].landing_page_url | https://doi.org/10.9734/jeai/2023/v45i52132 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5061977297 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4852-2268 |
| authorships[0].author.display_name | Manish Kumar |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I138367206 |
| authorships[0].affiliations[0].raw_affiliation_string | Agricultural Mechanization Division, ICAR-Central Institute of Agricultural Engineering, Nabi Bagh, Berasia Road, Bhopal-462038, Madhya Pradesh, India. |
| authorships[0].institutions[0].id | https://openalex.org/I138367206 |
| authorships[0].institutions[0].ror | https://ror.org/026j5b854 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I138367206, https://openalex.org/I179420787 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Central Institute of Agricultural Engineering |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | M. Kumar |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Agricultural Mechanization Division, ICAR-Central Institute of Agricultural Engineering, Nabi Bagh, Berasia Road, Bhopal-462038, Madhya Pradesh, India. |
| authorships[1].author.id | https://openalex.org/A5038078724 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4850-4702 |
| authorships[1].author.display_name | Narendra Singh Chandel |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I138367206 |
| authorships[1].affiliations[0].raw_affiliation_string | gricultural Mechanization Division, ICAR-Central Institute of Agricultural Engineering, Nabi Bagh, Berasia Road, Bhopal-462038, Madhya Pradesh, India. |
| authorships[1].institutions[0].id | https://openalex.org/I138367206 |
| authorships[1].institutions[0].ror | https://ror.org/026j5b854 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I138367206, https://openalex.org/I179420787 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Central Institute of Agricultural Engineering |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | N. S. Chandel |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | gricultural Mechanization Division, ICAR-Central Institute of Agricultural Engineering, Nabi Bagh, Berasia Road, Bhopal-462038, Madhya Pradesh, India. |
| authorships[2].author.id | https://openalex.org/A5076950110 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1859-9122 |
| authorships[2].author.display_name | Dushyant Singh |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I138367206 |
| authorships[2].affiliations[0].raw_affiliation_string | ICAR-CIAE, Nabi Bagh, Berasia Road, Bhopal – 462038, Madhya Pradesh, India. |
| authorships[2].institutions[0].id | https://openalex.org/I138367206 |
| authorships[2].institutions[0].ror | https://ror.org/026j5b854 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I138367206, https://openalex.org/I179420787 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Central Institute of Agricultural Engineering |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | D. Singh |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | ICAR-CIAE, Nabi Bagh, Berasia Road, Bhopal – 462038, Madhya Pradesh, India. |
| authorships[3].author.id | https://openalex.org/A5080080845 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9137-9308 |
| authorships[3].author.display_name | Laxman Singh Rajput |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210166498 |
| authorships[3].affiliations[0].raw_affiliation_string | ICAR-IISR, Indore – 462038, Madhya Pradesh, India. |
| authorships[3].institutions[0].id | https://openalex.org/I4210166498 |
| authorships[3].institutions[0].ror | https://ror.org/05vm6r550 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I179420787, https://openalex.org/I4210166498 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | Indian Institute of Soybean Research |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | L. S. Rajput |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | ICAR-IISR, Indore – 462038, Madhya Pradesh, India. |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://journaljeai.com/index.php/JEAI/article/download/2132/4262 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Soybean Disease Detection and Segmentation Based on Mask-RCNN Algorithm |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10616 |
| primary_topic.field.id | https://openalex.org/fields/11 |
| primary_topic.field.display_name | Agricultural and Biological Sciences |
| primary_topic.score | 0.983299970626831 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1110 |
| primary_topic.subfield.display_name | Plant Science |
| primary_topic.display_name | Smart Agriculture and AI |
| related_works | https://openalex.org/W2390507943, https://openalex.org/W2377439653, https://openalex.org/W2091906350, https://openalex.org/W2950174099, https://openalex.org/W1831388522, https://openalex.org/W3004644154, https://openalex.org/W2040650869, https://openalex.org/W3011230053, https://openalex.org/W4387521006, https://openalex.org/W2991082400 |
| cited_by_count | 11 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 8 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| locations_count | 1 |
| best_oa_location.id | doi:10.9734/jeai/2023/v45i52132 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210169779 |
| best_oa_location.source.issn | 2457-0591 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2457-0591 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Experimental Agriculture International |
| best_oa_location.source.host_organization | https://openalex.org/P4310320855 |
| best_oa_location.source.host_organization_name | Sciencedomain International |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320855 |
| best_oa_location.source.host_organization_lineage_names | Sciencedomain International |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://journaljeai.com/index.php/JEAI/article/download/2132/4262 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Experimental Agriculture International |
| best_oa_location.landing_page_url | https://doi.org/10.9734/jeai/2023/v45i52132 |
| primary_location.id | doi:10.9734/jeai/2023/v45i52132 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210169779 |
| primary_location.source.issn | 2457-0591 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2457-0591 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Experimental Agriculture International |
| primary_location.source.host_organization | https://openalex.org/P4310320855 |
| primary_location.source.host_organization_name | Sciencedomain International |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320855 |
| primary_location.source.host_organization_lineage_names | Sciencedomain International |
| primary_location.license | |
| primary_location.pdf_url | https://journaljeai.com/index.php/JEAI/article/download/2132/4262 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Experimental Agriculture International |
| primary_location.landing_page_url | https://doi.org/10.9734/jeai/2023/v45i52132 |
| publication_date | 2023-04-05 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2046833979, https://openalex.org/W2611811901, https://openalex.org/W2759366285, https://openalex.org/W6819060087, https://openalex.org/W3027994476, https://openalex.org/W2966432859, https://openalex.org/W2806065259, https://openalex.org/W4280523200, https://openalex.org/W2185489349, https://openalex.org/W2946042805, https://openalex.org/W2961092318, https://openalex.org/W4295347260 |
| referenced_works_count | 12 |
| abstract_inverted_index.a | 38, 62, 135, 205 |
| abstract_inverted_index.50 | 116 |
| abstract_inverted_index.8, | 153 |
| abstract_inverted_index.In | 223 |
| abstract_inverted_index.as | 125 |
| abstract_inverted_index.at | 134, 162, 186 |
| abstract_inverted_index.by | 111 |
| abstract_inverted_index.in | 31, 127, 231, 241 |
| abstract_inverted_index.of | 18, 79, 89, 107, 137, 165, 189, 219, 229, 238 |
| abstract_inverted_index.on | 70, 201 |
| abstract_inverted_index.to | 49, 225 |
| abstract_inverted_index.50, | 152 |
| abstract_inverted_index.80, | 150 |
| abstract_inverted_index.85% | 185 |
| abstract_inverted_index.Net | 115 |
| abstract_inverted_index.RGB | 77 |
| abstract_inverted_index.Res | 114 |
| abstract_inverted_index.The | 75, 97, 118, 130, 157, 174 |
| abstract_inverted_index.and | 13, 86, 146, 154, 172, 213 |
| abstract_inverted_index.are | 20 |
| abstract_inverted_index.for | 42, 53, 65, 104, 208, 216 |
| abstract_inverted_index.per | 141 |
| abstract_inverted_index.the | 34, 94, 105, 113, 178, 197, 217, 227, 232, 236 |
| abstract_inverted_index.use | 237 |
| abstract_inverted_index.was | 102, 132, 160 |
| abstract_inverted_index.0.90 | 187 |
| abstract_inverted_index.500, | 151 |
| abstract_inverted_index.FLS, | 83 |
| abstract_inverted_index.Mask | 98, 128 |
| abstract_inverted_index.RAB, | 84 |
| abstract_inverted_index.SMV, | 85 |
| abstract_inverted_index.This | 59, 193 |
| abstract_inverted_index.cure | 55 |
| abstract_inverted_index.deep | 71, 202 |
| abstract_inverted_index.from | 93 |
| abstract_inverted_index.help | 48 |
| abstract_inverted_index.i.e. | 169, 182 |
| abstract_inverted_index.leaf | 2, 24, 44, 67, 109, 211 |
| abstract_inverted_index.less | 242 |
| abstract_inverted_index.rate | 148 |
| abstract_inverted_index.spot | 3 |
| abstract_inverted_index.step | 140 |
| abstract_inverted_index.take | 50 |
| abstract_inverted_index.than | 184 |
| abstract_inverted_index.that | 26, 177, 196, 226 |
| abstract_inverted_index.used | 103, 124 |
| abstract_inverted_index.were | 91, 123, 149 |
| abstract_inverted_index.will | 47 |
| abstract_inverted_index.with | 56 |
| abstract_inverted_index.& | 144 |
| abstract_inverted_index.(YMV) | 17 |
| abstract_inverted_index.0.80, | 170 |
| abstract_inverted_index.0.85, | 171 |
| abstract_inverted_index.0.90. | 173 |
| abstract_inverted_index.3,127 | 76 |
| abstract_inverted_index.R-CNN | 99 |
| abstract_inverted_index.based | 69, 200 |
| abstract_inverted_index.early | 233 |
| abstract_inverted_index.epoch | 142 |
| abstract_inverted_index.input | 126 |
| abstract_inverted_index.level | 188 |
| abstract_inverted_index.major | 21 |
| abstract_inverted_index.model | 131 |
| abstract_inverted_index.needs | 37 |
| abstract_inverted_index.other | 220 |
| abstract_inverted_index.plant | 221 |
| abstract_inverted_index.stage | 234 |
| abstract_inverted_index.study | 60 |
| abstract_inverted_index.three | 163 |
| abstract_inverted_index.virus | 11, 16 |
| abstract_inverted_index.which | 46 |
| abstract_inverted_index.yield | 30 |
| abstract_inverted_index.(FLS), | 4 |
| abstract_inverted_index.(RAB), | 8 |
| abstract_inverted_index.(SMV), | 12 |
| abstract_inverted_index.0.001, | 155 |
| abstract_inverted_index.India. | 32 |
| abstract_inverted_index.R-CNN. | 129 |
| abstract_inverted_index.action | 52 |
| abstract_inverted_index.aerial | 6 |
| abstract_inverted_index.affect | 28 |
| abstract_inverted_index.blight | 7 |
| abstract_inverted_index.common | 22 |
| abstract_inverted_index.images | 78, 120 |
| abstract_inverted_index.leaves | 88 |
| abstract_inverted_index.levels | 164 |
| abstract_inverted_index.method | 41 |
| abstract_inverted_index.mosaic | 10, 15 |
| abstract_inverted_index.neural | 73 |
| abstract_inverted_index.number | 136 |
| abstract_inverted_index.reduce | 235 |
| abstract_inverted_index.system | 36 |
| abstract_inverted_index.yellow | 14 |
| abstract_inverted_index.disease | 54 |
| abstract_inverted_index.epochs, | 138 |
| abstract_inverted_index.fields. | 96 |
| abstract_inverted_index.frogeye | 1 |
| abstract_inverted_index.greater | 183 |
| abstract_inverted_index.leaves, | 81 |
| abstract_inverted_index.losses. | 58 |
| abstract_inverted_index.maximum | 179 |
| abstract_inverted_index.minimum | 57, 166, 190 |
| abstract_inverted_index.module. | 117 |
| abstract_inverted_index.pixels) | 122 |
| abstract_inverted_index.results | 175 |
| abstract_inverted_index.soybean | 9, 19, 23, 29, 43, 66, 90, 108, 210 |
| abstract_inverted_index.studied | 61 |
| abstract_inverted_index.trained | 133 |
| abstract_inverted_index.However, | 33 |
| abstract_inverted_index.accuracy | 159, 181 |
| abstract_inverted_index.addition | 224 |
| abstract_inverted_index.detector | 64, 199 |
| abstract_inverted_index.diseases | 25, 68, 110, 212 |
| abstract_inverted_index.existing | 35 |
| abstract_inverted_index.feasible | 206 |
| abstract_inverted_index.guidance | 215 |
| abstract_inverted_index.indicate | 176 |
| abstract_inverted_index.learning | 147, 203 |
| abstract_inverted_index.provides | 204, 214 |
| abstract_inverted_index.research | 194 |
| abstract_inverted_index.solution | 207 |
| abstract_inverted_index.training | 139, 143 |
| abstract_inverted_index.(512×512 | 121 |
| abstract_inverted_index.algorithm | 101 |
| abstract_inverted_index.collected | 92 |
| abstract_inverted_index.detection | 40, 100, 106, 158, 167, 180, 191, 218 |
| abstract_inverted_index.diseases, | 45 |
| abstract_inverted_index.diseases. | 222 |
| abstract_inverted_index.indicates | 195 |
| abstract_inverted_index.networks. | 74 |
| abstract_inverted_index.pesticide | 230, 239 |
| abstract_inverted_index.real-time | 39, 63, 198 |
| abstract_inverted_index.resulting | 240 |
| abstract_inverted_index.seriously | 27 |
| abstract_inverted_index.calculated | 161 |
| abstract_inverted_index.confidence | 168 |
| abstract_inverted_index.diagnosing | 209 |
| abstract_inverted_index.pollution. | 244 |
| abstract_inverted_index.agriculture | 95 |
| abstract_inverted_index.application | 228 |
| abstract_inverted_index.appropriate | 51 |
| abstract_inverted_index.confidence. | 192 |
| abstract_inverted_index.introducing | 112 |
| abstract_inverted_index.rhizoctonia | 5 |
| abstract_inverted_index.validation, | 145 |
| abstract_inverted_index.Anthracnose, | 0 |
| abstract_inverted_index.YMV-affected | 87 |
| abstract_inverted_index.anthracnose, | 82 |
| abstract_inverted_index.disease-free | 80 |
| abstract_inverted_index.convolutional | 72 |
| abstract_inverted_index.environmental | 243 |
| abstract_inverted_index.pre-processed | 119 |
| abstract_inverted_index.respectively. | 156 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.94401304 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |