SP-VINS: A Hybrid Stereo Visual Inertial Navigation System based on Implicit Environmental Map Article Swipe
YOU?
·
· 2025
· Open Access
·
Filter-based visual inertial navigation system (VINS) has attracted mobile-robot researchers for the good balance between accuracy and efficiency, but its limited mapping quality hampers long-term high-accuracy state estimation. To this end, we first propose a novel filter-based stereo VINS, differing from traditional simultaneous localization and mapping (SLAM) systems based on 3D map, which performs efficient loop closure constraints with implicit environmental map composed of keyframes and 2D keypoints. Secondly, we proposed a hybrid residual filter framework that combines landmark reprojection and ray constraints to construct a unified Jacobian matrix for measurement updates. Finally, considering the degraded environment, we incorporated the camera-IMU extrinsic parameters into visual description to achieve online calibration. Benchmark experiments demonstrate that the proposed SP-VINS achieves high computational efficiency while maintaining long-term high-accuracy localization performance, and is superior to existing state-of-the-art (SOTA) methods.
Related Topics
- Type
- article
- Landing Page
- http://arxiv.org/abs/2511.18756
- https://arxiv.org/pdf/2511.18756
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W7106783093
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7106783093Canonical identifier for this work in OpenAlex
- Title
-
SP-VINS: A Hybrid Stereo Visual Inertial Navigation System based on Implicit Environmental MapWork title
- Type
-
articleOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-24Full publication date if available
- Authors
-
Du Xueyu, Zhang Li-lian, Duan, Fuan, Luo, Xincan, Wang Mao-song, WU Wenqi, Jun-maoList of authors in order
- Landing page
-
https://arxiv.org/abs/2511.18756Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2511.18756Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2511.18756Direct OA link when available
- Concepts
-
Computer vision, Computer science, Artificial intelligence, Reprojection error, Landmark, Jacobian matrix and determinant, Residual, Benchmark (surveying), Construct (python library), Inertial navigation system, Inertial measurement unit, Filter (signal processing), Visualization, Simultaneous localization and mapping, Navigation system, Stereopsis, Inertial frame of reference, State (computer science), Saliency map, Motion planning, Kalman filter, Orientation (vector space), Redundancy (engineering), Matrix (chemical analysis), Stereo cameras, TrajectoryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7106783093 |
|---|---|
| doi | |
| ids.openalex | https://openalex.org/W7106783093 |
| fwci | 0.0 |
| type | article |
| title | SP-VINS: A Hybrid Stereo Visual Inertial Navigation System based on Implicit Environmental Map |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10191 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9685150384902954 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2202 |
| topics[0].subfield.display_name | Aerospace Engineering |
| topics[0].display_name | Robotics and Sensor-Based Localization |
| topics[1].id | https://openalex.org/T10531 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.016038332134485245 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Vision and Imaging |
| topics[2].id | https://openalex.org/T10627 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.0037651213351637125 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Image and Video Retrieval Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C31972630 |
| concepts[0].level | 1 |
| concepts[0].score | 0.7392578125 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[0].display_name | Computer vision |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7250712513923645 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.666080892086029 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C23903533 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5949090719223022 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q17122739 |
| concepts[3].display_name | Reprojection error |
| concepts[4].id | https://openalex.org/C2780297707 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5774036645889282 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q4895393 |
| concepts[4].display_name | Landmark |
| concepts[5].id | https://openalex.org/C200331156 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5551750659942627 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q506041 |
| concepts[5].display_name | Jacobian matrix and determinant |
| concepts[6].id | https://openalex.org/C155512373 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5241840481758118 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q287450 |
| concepts[6].display_name | Residual |
| concepts[7].id | https://openalex.org/C185798385 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4975283145904541 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[7].display_name | Benchmark (surveying) |
| concepts[8].id | https://openalex.org/C2780801425 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4810076653957367 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5164392 |
| concepts[8].display_name | Construct (python library) |
| concepts[9].id | https://openalex.org/C128651787 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4808339476585388 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q570607 |
| concepts[9].display_name | Inertial navigation system |
| concepts[10].id | https://openalex.org/C79061980 |
| concepts[10].level | 2 |
| concepts[10].score | 0.47035181522369385 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q941680 |
| concepts[10].display_name | Inertial measurement unit |
| concepts[11].id | https://openalex.org/C106131492 |
| concepts[11].level | 2 |
| concepts[11].score | 0.45686763525009155 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[11].display_name | Filter (signal processing) |
| concepts[12].id | https://openalex.org/C36464697 |
| concepts[12].level | 2 |
| concepts[12].score | 0.42758458852767944 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q451553 |
| concepts[12].display_name | Visualization |
| concepts[13].id | https://openalex.org/C86369673 |
| concepts[13].level | 4 |
| concepts[13].score | 0.42094293236732483 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1203659 |
| concepts[13].display_name | Simultaneous localization and mapping |
| concepts[14].id | https://openalex.org/C2777891301 |
| concepts[14].level | 2 |
| concepts[14].score | 0.4206286370754242 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q3475123 |
| concepts[14].display_name | Navigation system |
| concepts[15].id | https://openalex.org/C68537008 |
| concepts[15].level | 2 |
| concepts[15].score | 0.34651756286621094 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q247932 |
| concepts[15].display_name | Stereopsis |
| concepts[16].id | https://openalex.org/C173386949 |
| concepts[16].level | 2 |
| concepts[16].score | 0.32668358087539673 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q192735 |
| concepts[16].display_name | Inertial frame of reference |
| concepts[17].id | https://openalex.org/C48103436 |
| concepts[17].level | 2 |
| concepts[17].score | 0.30645546317100525 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q599031 |
| concepts[17].display_name | State (computer science) |
| concepts[18].id | https://openalex.org/C2779679900 |
| concepts[18].level | 3 |
| concepts[18].score | 0.2835257649421692 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q25304431 |
| concepts[18].display_name | Saliency map |
| concepts[19].id | https://openalex.org/C81074085 |
| concepts[19].level | 3 |
| concepts[19].score | 0.27674365043640137 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q366872 |
| concepts[19].display_name | Motion planning |
| concepts[20].id | https://openalex.org/C157286648 |
| concepts[20].level | 2 |
| concepts[20].score | 0.27464088797569275 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q846780 |
| concepts[20].display_name | Kalman filter |
| concepts[21].id | https://openalex.org/C16345878 |
| concepts[21].level | 2 |
| concepts[21].score | 0.26924219727516174 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q107472979 |
| concepts[21].display_name | Orientation (vector space) |
| concepts[22].id | https://openalex.org/C152124472 |
| concepts[22].level | 2 |
| concepts[22].score | 0.2679971158504486 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q1204361 |
| concepts[22].display_name | Redundancy (engineering) |
| concepts[23].id | https://openalex.org/C106487976 |
| concepts[23].level | 2 |
| concepts[23].score | 0.2655792236328125 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q685816 |
| concepts[23].display_name | Matrix (chemical analysis) |
| concepts[24].id | https://openalex.org/C35861506 |
| concepts[24].level | 3 |
| concepts[24].score | 0.26350778341293335 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q17141434 |
| concepts[24].display_name | Stereo cameras |
| concepts[25].id | https://openalex.org/C13662910 |
| concepts[25].level | 2 |
| concepts[25].score | 0.2632175385951996 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q193139 |
| concepts[25].display_name | Trajectory |
| keywords[0].id | https://openalex.org/keywords/reprojection-error |
| keywords[0].score | 0.5949090719223022 |
| keywords[0].display_name | Reprojection error |
| keywords[1].id | https://openalex.org/keywords/landmark |
| keywords[1].score | 0.5774036645889282 |
| keywords[1].display_name | Landmark |
| keywords[2].id | https://openalex.org/keywords/jacobian-matrix-and-determinant |
| keywords[2].score | 0.5551750659942627 |
| keywords[2].display_name | Jacobian matrix and determinant |
| keywords[3].id | https://openalex.org/keywords/residual |
| keywords[3].score | 0.5241840481758118 |
| keywords[3].display_name | Residual |
| keywords[4].id | https://openalex.org/keywords/benchmark |
| keywords[4].score | 0.4975283145904541 |
| keywords[4].display_name | Benchmark (surveying) |
| keywords[5].id | https://openalex.org/keywords/construct |
| keywords[5].score | 0.4810076653957367 |
| keywords[5].display_name | Construct (python library) |
| keywords[6].id | https://openalex.org/keywords/inertial-navigation-system |
| keywords[6].score | 0.4808339476585388 |
| keywords[6].display_name | Inertial navigation system |
| keywords[7].id | https://openalex.org/keywords/inertial-measurement-unit |
| keywords[7].score | 0.47035181522369385 |
| keywords[7].display_name | Inertial measurement unit |
| keywords[8].id | https://openalex.org/keywords/filter |
| keywords[8].score | 0.45686763525009155 |
| keywords[8].display_name | Filter (signal processing) |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2511.18756 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2511.18756 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2511.18756 |
| indexed_in | arxiv |
| authorships[0].author.id | https://openalex.org/A2743696718 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Du Xueyu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Du, Xueyu |
| authorships[0].is_corresponding | True |
| authorships[1].author.id | https://openalex.org/A2385068637 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Zhang Li-lian |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhang, Lilian |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Duan, Fuan |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Duan, Fuan |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Luo, Xincan |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Luo, Xincan |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A2364275301 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Wang Mao-song |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Wang, Maosong |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A2223744307 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | WU Wenqi |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Wu, Wenqi |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A2654367489 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Jun-mao |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | JunMao |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2511.18756 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-27T00:00:00 |
| display_name | SP-VINS: A Hybrid Stereo Visual Inertial Navigation System based on Implicit Environmental Map |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-27T01:16:37.896743 |
| primary_topic.id | https://openalex.org/T10191 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9685150384902954 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2202 |
| primary_topic.subfield.display_name | Aerospace Engineering |
| primary_topic.display_name | Robotics and Sensor-Based Localization |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:arXiv.org:2511.18756 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2511.18756 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2511.18756 |
| primary_location.id | pmh:oai:arXiv.org:2511.18756 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2511.18756 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2511.18756 |
| publication_date | 2025-11-24 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 34, 71, 85 |
| abstract_inverted_index.2D | 66 |
| abstract_inverted_index.3D | 50 |
| abstract_inverted_index.To | 28 |
| abstract_inverted_index.is | 128 |
| abstract_inverted_index.of | 63 |
| abstract_inverted_index.on | 49 |
| abstract_inverted_index.to | 83, 106, 130 |
| abstract_inverted_index.we | 31, 69, 97 |
| abstract_inverted_index.and | 16, 44, 65, 80, 127 |
| abstract_inverted_index.but | 18 |
| abstract_inverted_index.for | 10, 89 |
| abstract_inverted_index.has | 6 |
| abstract_inverted_index.its | 19 |
| abstract_inverted_index.map | 61 |
| abstract_inverted_index.ray | 81 |
| abstract_inverted_index.the | 11, 94, 99, 114 |
| abstract_inverted_index.end, | 30 |
| abstract_inverted_index.from | 40 |
| abstract_inverted_index.good | 12 |
| abstract_inverted_index.high | 118 |
| abstract_inverted_index.into | 103 |
| abstract_inverted_index.loop | 55 |
| abstract_inverted_index.map, | 51 |
| abstract_inverted_index.that | 76, 113 |
| abstract_inverted_index.this | 29 |
| abstract_inverted_index.with | 58 |
| abstract_inverted_index.VINS, | 38 |
| abstract_inverted_index.based | 48 |
| abstract_inverted_index.first | 32 |
| abstract_inverted_index.novel | 35 |
| abstract_inverted_index.state | 26 |
| abstract_inverted_index.which | 52 |
| abstract_inverted_index.while | 121 |
| abstract_inverted_index.(SLAM) | 46 |
| abstract_inverted_index.(SOTA) | 133 |
| abstract_inverted_index.(VINS) | 5 |
| abstract_inverted_index.filter | 74 |
| abstract_inverted_index.hybrid | 72 |
| abstract_inverted_index.matrix | 88 |
| abstract_inverted_index.online | 108 |
| abstract_inverted_index.stereo | 37 |
| abstract_inverted_index.system | 4 |
| abstract_inverted_index.visual | 1, 104 |
| abstract_inverted_index.SP-VINS | 116 |
| abstract_inverted_index.achieve | 107 |
| abstract_inverted_index.balance | 13 |
| abstract_inverted_index.between | 14 |
| abstract_inverted_index.closure | 56 |
| abstract_inverted_index.hampers | 23 |
| abstract_inverted_index.limited | 20 |
| abstract_inverted_index.mapping | 21, 45 |
| abstract_inverted_index.propose | 33 |
| abstract_inverted_index.quality | 22 |
| abstract_inverted_index.systems | 47 |
| abstract_inverted_index.unified | 86 |
| abstract_inverted_index.Finally, | 92 |
| abstract_inverted_index.Jacobian | 87 |
| abstract_inverted_index.accuracy | 15 |
| abstract_inverted_index.achieves | 117 |
| abstract_inverted_index.combines | 77 |
| abstract_inverted_index.composed | 62 |
| abstract_inverted_index.degraded | 95 |
| abstract_inverted_index.existing | 131 |
| abstract_inverted_index.implicit | 59 |
| abstract_inverted_index.inertial | 2 |
| abstract_inverted_index.landmark | 78 |
| abstract_inverted_index.methods. | 134 |
| abstract_inverted_index.performs | 53 |
| abstract_inverted_index.proposed | 70, 115 |
| abstract_inverted_index.residual | 73 |
| abstract_inverted_index.superior | 129 |
| abstract_inverted_index.updates. | 91 |
| abstract_inverted_index.Benchmark | 110 |
| abstract_inverted_index.Secondly, | 68 |
| abstract_inverted_index.attracted | 7 |
| abstract_inverted_index.construct | 84 |
| abstract_inverted_index.differing | 39 |
| abstract_inverted_index.efficient | 54 |
| abstract_inverted_index.extrinsic | 101 |
| abstract_inverted_index.framework | 75 |
| abstract_inverted_index.keyframes | 64 |
| abstract_inverted_index.long-term | 24, 123 |
| abstract_inverted_index.camera-IMU | 100 |
| abstract_inverted_index.efficiency | 120 |
| abstract_inverted_index.keypoints. | 67 |
| abstract_inverted_index.navigation | 3 |
| abstract_inverted_index.parameters | 102 |
| abstract_inverted_index.considering | 93 |
| abstract_inverted_index.constraints | 57, 82 |
| abstract_inverted_index.demonstrate | 112 |
| abstract_inverted_index.description | 105 |
| abstract_inverted_index.efficiency, | 17 |
| abstract_inverted_index.estimation. | 27 |
| abstract_inverted_index.experiments | 111 |
| abstract_inverted_index.maintaining | 122 |
| abstract_inverted_index.measurement | 90 |
| abstract_inverted_index.researchers | 9 |
| abstract_inverted_index.traditional | 41 |
| abstract_inverted_index.Filter-based | 0 |
| abstract_inverted_index.calibration. | 109 |
| abstract_inverted_index.environment, | 96 |
| abstract_inverted_index.filter-based | 36 |
| abstract_inverted_index.incorporated | 98 |
| abstract_inverted_index.localization | 43, 125 |
| abstract_inverted_index.mobile-robot | 8 |
| abstract_inverted_index.performance, | 126 |
| abstract_inverted_index.reprojection | 79 |
| abstract_inverted_index.simultaneous | 42 |
| abstract_inverted_index.computational | 119 |
| abstract_inverted_index.environmental | 60 |
| abstract_inverted_index.high-accuracy | 25, 124 |
| abstract_inverted_index.state-of-the-art | 132 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.86834608 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |