Sparse Concept Coded Tetrolet Transform for Unconstrained Odia Character Recognition Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2004.01551
Feature representation in the form of spatio-spectral decomposition is one of the robust techniques adopted in automatic handwritten character recognition systems. In this regard, we propose a new image representation approach for unconstrained handwritten alphanumeric characters using sparse concept coded Tetrolets. Tetrolets, which does not use fixed dyadic square blocks for spectral decomposition like conventional wavelets, preserve the localized variations in handwritings by adopting tetrominoes those capture the shape geometry. The sparse concept coding of low entropy Tetrolet representation is found to extract the important hidden information (concept) for superior pattern discrimination. Large scale experimentation using ten databases in six different scripts (Bangla, Devanagari, Odia, English, Arabic and Telugu) has been performed. The proposed feature representation along with standard classifiers such as random forest, support vector machine (SVM), nearest neighbor and modified quadratic discriminant function (MQDF) is found to achieve state-of-the-art recognition performance in all the databases, viz. 99.40% (MNIST); 98.72% and 93.24% (IITBBS); 99.38% and 99.22% (ISI Kolkata). The proposed OCR system is shown to perform better than other sparse based techniques such as PCA, SparsePCA and SparseLDA, as well as better than existing transforms (Wavelet, Slantlet and Stockwell).
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2004.01551
- https://arxiv.org/pdf/2004.01551
- OA Status
- green
- Cited By
- 5
- References
- 52
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3015046746
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3015046746Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2004.01551Digital Object Identifier
- Title
-
Sparse Concept Coded Tetrolet Transform for Unconstrained Odia Character RecognitionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-04-03Full publication date if available
- Authors
-
Kalyan S. Dash, Niladri B. Puhan, Ganapati PandaList of authors in order
- Landing page
-
https://arxiv.org/abs/2004.01551Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2004.01551Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2004.01551Direct OA link when available
- Concepts
-
Pattern recognition (psychology), Artificial intelligence, Computer science, MNIST database, Sparse approximation, Support vector machine, Alphanumeric, Artificial neural network, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1, 2022: 1, 2021: 1, 2020: 2Per-year citation counts (last 5 years)
- References (count)
-
52Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3015046746 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2004.01551 |
| ids.doi | https://doi.org/10.48550/arxiv.2004.01551 |
| ids.mag | 3015046746 |
| ids.openalex | https://openalex.org/W3015046746 |
| fwci | |
| type | preprint |
| title | Sparse Concept Coded Tetrolet Transform for Unconstrained Odia Character Recognition |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10601 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Handwritten Text Recognition Techniques |
| topics[1].id | https://openalex.org/T10824 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9986000061035156 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Image Retrieval and Classification Techniques |
| topics[2].id | https://openalex.org/T12707 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9940999746322632 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2214 |
| topics[2].subfield.display_name | Media Technology |
| topics[2].display_name | Vehicle License Plate Recognition |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C153180895 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8263964653015137 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[0].display_name | Pattern recognition (psychology) |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7076148390769958 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6439846158027649 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C190502265 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5442382097244263 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q17069496 |
| concepts[3].display_name | MNIST database |
| concepts[4].id | https://openalex.org/C124066611 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5029684901237488 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q28684319 |
| concepts[4].display_name | Sparse approximation |
| concepts[5].id | https://openalex.org/C12267149 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4417153596878052 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[5].display_name | Support vector machine |
| concepts[6].id | https://openalex.org/C2781003394 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4396214187145233 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q737372 |
| concepts[6].display_name | Alphanumeric |
| concepts[7].id | https://openalex.org/C50644808 |
| concepts[7].level | 2 |
| concepts[7].score | 0.21185296773910522 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[7].display_name | Artificial neural network |
| concepts[8].id | https://openalex.org/C199360897 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[8].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/pattern-recognition |
| keywords[0].score | 0.8263964653015137 |
| keywords[0].display_name | Pattern recognition (psychology) |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.7076148390769958 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6439846158027649 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/mnist-database |
| keywords[3].score | 0.5442382097244263 |
| keywords[3].display_name | MNIST database |
| keywords[4].id | https://openalex.org/keywords/sparse-approximation |
| keywords[4].score | 0.5029684901237488 |
| keywords[4].display_name | Sparse approximation |
| keywords[5].id | https://openalex.org/keywords/support-vector-machine |
| keywords[5].score | 0.4417153596878052 |
| keywords[5].display_name | Support vector machine |
| keywords[6].id | https://openalex.org/keywords/alphanumeric |
| keywords[6].score | 0.4396214187145233 |
| keywords[6].display_name | Alphanumeric |
| keywords[7].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[7].score | 0.21185296773910522 |
| keywords[7].display_name | Artificial neural network |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2004.01551 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2004.01551 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2004.01551 |
| locations[1].id | doi:10.48550/arxiv.2004.01551 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2004.01551 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5061952885 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3008-6162 |
| authorships[0].author.display_name | Kalyan S. Dash |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kalyan S. Dash |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5086045014 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5932-1579 |
| authorships[1].author.display_name | Niladri B. Puhan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Niladri B. Puhan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5034931207 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3555-5685 |
| authorships[2].author.display_name | Ganapati Panda |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I99729588 |
| authorships[2].affiliations[0].raw_affiliation_string | Indian Institute of Technology Bhubaneswar#TAB# |
| authorships[2].institutions[0].id | https://openalex.org/I99729588 |
| authorships[2].institutions[0].ror | https://ror.org/04gx72j20 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I99729588 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Indian Institute of Technology Bhubaneswar |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Ganapati Panda |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Indian Institute of Technology Bhubaneswar#TAB# |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2004.01551 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2020-04-10T00:00:00 |
| display_name | Sparse Concept Coded Tetrolet Transform for Unconstrained Odia Character Recognition |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10601 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Handwritten Text Recognition Techniques |
| related_works | https://openalex.org/W4386603768, https://openalex.org/W2950475743, https://openalex.org/W2886711096, https://openalex.org/W2750384547, https://openalex.org/W4380078352, https://openalex.org/W3046591097, https://openalex.org/W2049379968, https://openalex.org/W2461009308, https://openalex.org/W3208266890, https://openalex.org/W1964749215 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2021 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2020 |
| counts_by_year[3].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2004.01551 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2004.01551 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2004.01551 |
| primary_location.id | pmh:oai:arXiv.org:2004.01551 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2004.01551 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2004.01551 |
| publication_date | 2020-04-03 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2041725740, https://openalex.org/W1978357561, https://openalex.org/W2012407727, https://openalex.org/W1974200853, https://openalex.org/W2604504584, https://openalex.org/W1998938582, https://openalex.org/W2142069714, https://openalex.org/W2161844191, https://openalex.org/W2023576919, https://openalex.org/W2156700398, https://openalex.org/W1554944419, https://openalex.org/W1518071186, https://openalex.org/W2112118277, https://openalex.org/W2147190724, https://openalex.org/W1997702161, https://openalex.org/W2140776489, https://openalex.org/W1976192005, https://openalex.org/W2342089072, https://openalex.org/W2303931467, https://openalex.org/W2057175746, https://openalex.org/W2141125852, https://openalex.org/W2145889472, https://openalex.org/W2028420691, https://openalex.org/W2755502793, https://openalex.org/W2035487336, https://openalex.org/W1993407226, https://openalex.org/W1968677253, https://openalex.org/W1975900269, https://openalex.org/W2138270545, https://openalex.org/W2146302034, https://openalex.org/W1616724183, https://openalex.org/W1998237531, https://openalex.org/W1994135796, https://openalex.org/W1542435325, https://openalex.org/W2139727660, https://openalex.org/W2294817589, https://openalex.org/W2779536586, https://openalex.org/W2226419174, https://openalex.org/W2164352361, https://openalex.org/W2026968593, https://openalex.org/W2599211034, https://openalex.org/W2117182510, https://openalex.org/W2170885533, https://openalex.org/W2511363933, https://openalex.org/W2024986448, https://openalex.org/W2012041290, https://openalex.org/W2119305530, https://openalex.org/W2137126602, https://openalex.org/W2057281839, https://openalex.org/W2050182383, https://openalex.org/W2315868700, https://openalex.org/W2135306864 |
| referenced_works_count | 52 |
| abstract_inverted_index.a | 26 |
| abstract_inverted_index.In | 21 |
| abstract_inverted_index.as | 121, 174, 179, 181 |
| abstract_inverted_index.by | 62 |
| abstract_inverted_index.in | 2, 15, 60, 98, 143 |
| abstract_inverted_index.is | 8, 79, 136, 163 |
| abstract_inverted_index.of | 5, 10, 74 |
| abstract_inverted_index.to | 81, 138, 165 |
| abstract_inverted_index.we | 24 |
| abstract_inverted_index.OCR | 161 |
| abstract_inverted_index.The | 70, 112, 159 |
| abstract_inverted_index.all | 144 |
| abstract_inverted_index.and | 107, 130, 151, 155, 177, 188 |
| abstract_inverted_index.for | 31, 50, 88 |
| abstract_inverted_index.has | 109 |
| abstract_inverted_index.low | 75 |
| abstract_inverted_index.new | 27 |
| abstract_inverted_index.not | 44 |
| abstract_inverted_index.one | 9 |
| abstract_inverted_index.six | 99 |
| abstract_inverted_index.ten | 96 |
| abstract_inverted_index.the | 3, 11, 57, 67, 83, 145 |
| abstract_inverted_index.use | 45 |
| abstract_inverted_index.(ISI | 157 |
| abstract_inverted_index.PCA, | 175 |
| abstract_inverted_index.been | 110 |
| abstract_inverted_index.does | 43 |
| abstract_inverted_index.form | 4 |
| abstract_inverted_index.like | 53 |
| abstract_inverted_index.such | 120, 173 |
| abstract_inverted_index.than | 168, 183 |
| abstract_inverted_index.this | 22 |
| abstract_inverted_index.viz. | 147 |
| abstract_inverted_index.well | 180 |
| abstract_inverted_index.with | 117 |
| abstract_inverted_index.Large | 92 |
| abstract_inverted_index.Odia, | 104 |
| abstract_inverted_index.along | 116 |
| abstract_inverted_index.based | 171 |
| abstract_inverted_index.coded | 39 |
| abstract_inverted_index.fixed | 46 |
| abstract_inverted_index.found | 80, 137 |
| abstract_inverted_index.image | 28 |
| abstract_inverted_index.other | 169 |
| abstract_inverted_index.scale | 93 |
| abstract_inverted_index.shape | 68 |
| abstract_inverted_index.shown | 164 |
| abstract_inverted_index.those | 65 |
| abstract_inverted_index.using | 36, 95 |
| abstract_inverted_index.which | 42 |
| abstract_inverted_index.(MQDF) | 135 |
| abstract_inverted_index.(SVM), | 127 |
| abstract_inverted_index.93.24% | 152 |
| abstract_inverted_index.98.72% | 150 |
| abstract_inverted_index.99.22% | 156 |
| abstract_inverted_index.99.38% | 154 |
| abstract_inverted_index.99.40% | 148 |
| abstract_inverted_index.Arabic | 106 |
| abstract_inverted_index.better | 167, 182 |
| abstract_inverted_index.blocks | 49 |
| abstract_inverted_index.coding | 73 |
| abstract_inverted_index.dyadic | 47 |
| abstract_inverted_index.hidden | 85 |
| abstract_inverted_index.random | 122 |
| abstract_inverted_index.robust | 12 |
| abstract_inverted_index.sparse | 37, 71, 170 |
| abstract_inverted_index.square | 48 |
| abstract_inverted_index.system | 162 |
| abstract_inverted_index.vector | 125 |
| abstract_inverted_index.Feature | 0 |
| abstract_inverted_index.Telugu) | 108 |
| abstract_inverted_index.achieve | 139 |
| abstract_inverted_index.adopted | 14 |
| abstract_inverted_index.capture | 66 |
| abstract_inverted_index.concept | 38, 72 |
| abstract_inverted_index.entropy | 76 |
| abstract_inverted_index.extract | 82 |
| abstract_inverted_index.feature | 114 |
| abstract_inverted_index.forest, | 123 |
| abstract_inverted_index.machine | 126 |
| abstract_inverted_index.nearest | 128 |
| abstract_inverted_index.pattern | 90 |
| abstract_inverted_index.perform | 166 |
| abstract_inverted_index.propose | 25 |
| abstract_inverted_index.regard, | 23 |
| abstract_inverted_index.scripts | 101 |
| abstract_inverted_index.support | 124 |
| abstract_inverted_index.(Bangla, | 102 |
| abstract_inverted_index.(MNIST); | 149 |
| abstract_inverted_index.English, | 105 |
| abstract_inverted_index.Slantlet | 187 |
| abstract_inverted_index.Tetrolet | 77 |
| abstract_inverted_index.adopting | 63 |
| abstract_inverted_index.approach | 30 |
| abstract_inverted_index.existing | 184 |
| abstract_inverted_index.function | 134 |
| abstract_inverted_index.modified | 131 |
| abstract_inverted_index.neighbor | 129 |
| abstract_inverted_index.preserve | 56 |
| abstract_inverted_index.proposed | 113, 160 |
| abstract_inverted_index.spectral | 51 |
| abstract_inverted_index.standard | 118 |
| abstract_inverted_index.superior | 89 |
| abstract_inverted_index.systems. | 20 |
| abstract_inverted_index.(IITBBS); | 153 |
| abstract_inverted_index.(Wavelet, | 186 |
| abstract_inverted_index.(concept) | 87 |
| abstract_inverted_index.Kolkata). | 158 |
| abstract_inverted_index.SparsePCA | 176 |
| abstract_inverted_index.automatic | 16 |
| abstract_inverted_index.character | 18 |
| abstract_inverted_index.databases | 97 |
| abstract_inverted_index.different | 100 |
| abstract_inverted_index.geometry. | 69 |
| abstract_inverted_index.important | 84 |
| abstract_inverted_index.localized | 58 |
| abstract_inverted_index.quadratic | 132 |
| abstract_inverted_index.wavelets, | 55 |
| abstract_inverted_index.SparseLDA, | 178 |
| abstract_inverted_index.Tetrolets, | 41 |
| abstract_inverted_index.Tetrolets. | 40 |
| abstract_inverted_index.characters | 35 |
| abstract_inverted_index.databases, | 146 |
| abstract_inverted_index.performed. | 111 |
| abstract_inverted_index.techniques | 13, 172 |
| abstract_inverted_index.transforms | 185 |
| abstract_inverted_index.variations | 59 |
| abstract_inverted_index.Devanagari, | 103 |
| abstract_inverted_index.Stockwell). | 189 |
| abstract_inverted_index.classifiers | 119 |
| abstract_inverted_index.handwritten | 17, 33 |
| abstract_inverted_index.information | 86 |
| abstract_inverted_index.performance | 142 |
| abstract_inverted_index.recognition | 19, 141 |
| abstract_inverted_index.tetrominoes | 64 |
| abstract_inverted_index.alphanumeric | 34 |
| abstract_inverted_index.conventional | 54 |
| abstract_inverted_index.discriminant | 133 |
| abstract_inverted_index.handwritings | 61 |
| abstract_inverted_index.decomposition | 7, 52 |
| abstract_inverted_index.unconstrained | 32 |
| abstract_inverted_index.representation | 1, 29, 78, 115 |
| abstract_inverted_index.discrimination. | 91 |
| abstract_inverted_index.experimentation | 94 |
| abstract_inverted_index.spatio-spectral | 6 |
| abstract_inverted_index.state-of-the-art | 140 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.5799999833106995 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile |