Sparse Data Generation for Particle-Based Simulation of Hadronic Jets in the LHC Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2109.15197
We develop a generative neural network for the generation of sparse data in particle physics using a permutation-invariant and physics-informed loss function. The input dataset used in this study consists of the particle constituents of hadronic jets due to its sparsity and the possibility of evaluating the network's ability to accurately describe the particles and jets properties. A variational autoencoder composed of convolutional layers in the encoder and decoder is used as the generator. The loss function consists of a reconstruction error term and the Kullback-Leibler divergence between the output of the encoder and the latent vector variables. The permutation-invariant loss on the particles' properties is combined with two mean-squared error terms that measure the difference between input and output jets mass and transverse momentum, which improves the network's generation capability as it imposes physics constraints, allowing the model to learn the kinematics of the jets.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2109.15197
- https://arxiv.org/pdf/2109.15197
- OA Status
- green
- Cited By
- 3
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4286951228
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4286951228Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2109.15197Digital Object Identifier
- Title
-
Sparse Data Generation for Particle-Based Simulation of Hadronic Jets in the LHCWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-09-30Full publication date if available
- Authors
-
Breno Orzari, T. R. Fernandez Perez Tomei, M. Pierini, Mary Touranakou, J. Duarte, R. Kansal, Jean-Roch Vlimant, Dimitrios GunopulosList of authors in order
- Landing page
-
https://arxiv.org/abs/2109.15197Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2109.15197Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2109.15197Direct OA link when available
- Concepts
-
Autoencoder, Hadron, Physics, Large Hadron Collider, Invariant (physics), Divergence (linguistics), Generator (circuit theory), Measure (data warehouse), Resampling, Artificial neural network, Algorithm, Permutation (music), Invariant mass, Particle physics, Statistical physics, Artificial intelligence, Computer science, Quantum mechanics, Linguistics, Database, Power (physics), Philosophy, AcousticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 3Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4286951228 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2109.15197 |
| ids.doi | https://doi.org/10.48550/arxiv.2109.15197 |
| ids.openalex | https://openalex.org/W4286951228 |
| fwci | |
| type | preprint |
| title | Sparse Data Generation for Particle-Based Simulation of Hadronic Jets in the LHC |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10048 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9822999835014343 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3106 |
| topics[0].subfield.display_name | Nuclear and High Energy Physics |
| topics[0].display_name | Particle physics theoretical and experimental studies |
| topics[1].id | https://openalex.org/T10527 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9692999720573425 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3106 |
| topics[1].subfield.display_name | Nuclear and High Energy Physics |
| topics[1].display_name | High-Energy Particle Collisions Research |
| topics[2].id | https://openalex.org/T13650 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9422000050544739 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Computational Physics and Python Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C101738243 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7632130980491638 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q786435 |
| concepts[0].display_name | Autoencoder |
| concepts[1].id | https://openalex.org/C19694890 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6277397274971008 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q101667 |
| concepts[1].display_name | Hadron |
| concepts[2].id | https://openalex.org/C121332964 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6199439167976379 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[2].display_name | Physics |
| concepts[3].id | https://openalex.org/C87668248 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6101200580596924 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q40605 |
| concepts[3].display_name | Large Hadron Collider |
| concepts[4].id | https://openalex.org/C190470478 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5796146392822266 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2370229 |
| concepts[4].display_name | Invariant (physics) |
| concepts[5].id | https://openalex.org/C207390915 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5393187403678894 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1230525 |
| concepts[5].display_name | Divergence (linguistics) |
| concepts[6].id | https://openalex.org/C2780992000 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5059882998466492 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q17016113 |
| concepts[6].display_name | Generator (circuit theory) |
| concepts[7].id | https://openalex.org/C2780009758 |
| concepts[7].level | 2 |
| concepts[7].score | 0.49750760197639465 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q6804172 |
| concepts[7].display_name | Measure (data warehouse) |
| concepts[8].id | https://openalex.org/C150921843 |
| concepts[8].level | 2 |
| concepts[8].score | 0.49683764576911926 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1170431 |
| concepts[8].display_name | Resampling |
| concepts[9].id | https://openalex.org/C50644808 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4839616119861603 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[9].display_name | Artificial neural network |
| concepts[10].id | https://openalex.org/C11413529 |
| concepts[10].level | 1 |
| concepts[10].score | 0.4470401704311371 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[10].display_name | Algorithm |
| concepts[11].id | https://openalex.org/C21308566 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4386940896511078 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7169365 |
| concepts[11].display_name | Permutation (music) |
| concepts[12].id | https://openalex.org/C151987854 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4366288483142853 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1097654 |
| concepts[12].display_name | Invariant mass |
| concepts[13].id | https://openalex.org/C109214941 |
| concepts[13].level | 1 |
| concepts[13].score | 0.42994213104248047 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q18334 |
| concepts[13].display_name | Particle physics |
| concepts[14].id | https://openalex.org/C121864883 |
| concepts[14].level | 1 |
| concepts[14].score | 0.3561664819717407 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q677916 |
| concepts[14].display_name | Statistical physics |
| concepts[15].id | https://openalex.org/C154945302 |
| concepts[15].level | 1 |
| concepts[15].score | 0.28983867168426514 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[15].display_name | Artificial intelligence |
| concepts[16].id | https://openalex.org/C41008148 |
| concepts[16].level | 0 |
| concepts[16].score | 0.2515845000743866 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[16].display_name | Computer science |
| concepts[17].id | https://openalex.org/C62520636 |
| concepts[17].level | 1 |
| concepts[17].score | 0.15383073687553406 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[17].display_name | Quantum mechanics |
| concepts[18].id | https://openalex.org/C41895202 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[18].display_name | Linguistics |
| concepts[19].id | https://openalex.org/C77088390 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[19].display_name | Database |
| concepts[20].id | https://openalex.org/C163258240 |
| concepts[20].level | 2 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[20].display_name | Power (physics) |
| concepts[21].id | https://openalex.org/C138885662 |
| concepts[21].level | 0 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[21].display_name | Philosophy |
| concepts[22].id | https://openalex.org/C24890656 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q82811 |
| concepts[22].display_name | Acoustics |
| keywords[0].id | https://openalex.org/keywords/autoencoder |
| keywords[0].score | 0.7632130980491638 |
| keywords[0].display_name | Autoencoder |
| keywords[1].id | https://openalex.org/keywords/hadron |
| keywords[1].score | 0.6277397274971008 |
| keywords[1].display_name | Hadron |
| keywords[2].id | https://openalex.org/keywords/physics |
| keywords[2].score | 0.6199439167976379 |
| keywords[2].display_name | Physics |
| keywords[3].id | https://openalex.org/keywords/large-hadron-collider |
| keywords[3].score | 0.6101200580596924 |
| keywords[3].display_name | Large Hadron Collider |
| keywords[4].id | https://openalex.org/keywords/invariant |
| keywords[4].score | 0.5796146392822266 |
| keywords[4].display_name | Invariant (physics) |
| keywords[5].id | https://openalex.org/keywords/divergence |
| keywords[5].score | 0.5393187403678894 |
| keywords[5].display_name | Divergence (linguistics) |
| keywords[6].id | https://openalex.org/keywords/generator |
| keywords[6].score | 0.5059882998466492 |
| keywords[6].display_name | Generator (circuit theory) |
| keywords[7].id | https://openalex.org/keywords/measure |
| keywords[7].score | 0.49750760197639465 |
| keywords[7].display_name | Measure (data warehouse) |
| keywords[8].id | https://openalex.org/keywords/resampling |
| keywords[8].score | 0.49683764576911926 |
| keywords[8].display_name | Resampling |
| keywords[9].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[9].score | 0.4839616119861603 |
| keywords[9].display_name | Artificial neural network |
| keywords[10].id | https://openalex.org/keywords/algorithm |
| keywords[10].score | 0.4470401704311371 |
| keywords[10].display_name | Algorithm |
| keywords[11].id | https://openalex.org/keywords/permutation |
| keywords[11].score | 0.4386940896511078 |
| keywords[11].display_name | Permutation (music) |
| keywords[12].id | https://openalex.org/keywords/invariant-mass |
| keywords[12].score | 0.4366288483142853 |
| keywords[12].display_name | Invariant mass |
| keywords[13].id | https://openalex.org/keywords/particle-physics |
| keywords[13].score | 0.42994213104248047 |
| keywords[13].display_name | Particle physics |
| keywords[14].id | https://openalex.org/keywords/statistical-physics |
| keywords[14].score | 0.3561664819717407 |
| keywords[14].display_name | Statistical physics |
| keywords[15].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[15].score | 0.28983867168426514 |
| keywords[15].display_name | Artificial intelligence |
| keywords[16].id | https://openalex.org/keywords/computer-science |
| keywords[16].score | 0.2515845000743866 |
| keywords[16].display_name | Computer science |
| keywords[17].id | https://openalex.org/keywords/quantum-mechanics |
| keywords[17].score | 0.15383073687553406 |
| keywords[17].display_name | Quantum mechanics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2109.15197 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2109.15197 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2109.15197 |
| locations[1].id | doi:10.48550/arxiv.2109.15197 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2109.15197 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5081045413 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4232-4743 |
| authorships[0].author.display_name | Breno Orzari |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Orzari, Breno |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5043534538 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1809-5226 |
| authorships[1].author.display_name | T. R. Fernandez Perez Tomei |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tomei, Thiago |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5106315352 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1939-4268 |
| authorships[2].author.display_name | M. Pierini |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Pierini, Maurizio |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5073675708 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3682-3258 |
| authorships[3].author.display_name | Mary Touranakou |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Touranakou, Mary |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100747243 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5076-7096 |
| authorships[4].author.display_name | J. Duarte |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Duarte, Javier |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5035476964 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-2445-1060 |
| authorships[5].author.display_name | R. Kansal |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Kansal, Raghav |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5100751779 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-9705-101X |
| authorships[6].author.display_name | Jean-Roch Vlimant |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Vlimant, Jean-Roch |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5063685438 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-6339-1879 |
| authorships[7].author.display_name | Dimitrios Gunopulos |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Gunopulos, Dimitrios |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2109.15197 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Sparse Data Generation for Particle-Based Simulation of Hadronic Jets in the LHC |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10048 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9822999835014343 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3106 |
| primary_topic.subfield.display_name | Nuclear and High Energy Physics |
| primary_topic.display_name | Particle physics theoretical and experimental studies |
| related_works | https://openalex.org/W2077508419, https://openalex.org/W2021333301, https://openalex.org/W2006114390, https://openalex.org/W2380800094, https://openalex.org/W2056203905, https://openalex.org/W4385400511, https://openalex.org/W2162206208, https://openalex.org/W2023660371, https://openalex.org/W2507906577, https://openalex.org/W4289761835 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2109.15197 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2109.15197 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2109.15197 |
| primary_location.id | pmh:oai:arXiv.org:2109.15197 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2109.15197 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2109.15197 |
| publication_date | 2021-09-30 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 57 |
| abstract_inverted_index.a | 2, 16, 79 |
| abstract_inverted_index.We | 0 |
| abstract_inverted_index.as | 71, 131 |
| abstract_inverted_index.in | 12, 26, 64 |
| abstract_inverted_index.is | 69, 105 |
| abstract_inverted_index.it | 132 |
| abstract_inverted_index.of | 9, 30, 34, 44, 61, 78, 90, 143 |
| abstract_inverted_index.on | 101 |
| abstract_inverted_index.to | 38, 49, 139 |
| abstract_inverted_index.The | 22, 74, 98 |
| abstract_inverted_index.and | 18, 41, 54, 67, 83, 93, 118, 122 |
| abstract_inverted_index.due | 37 |
| abstract_inverted_index.for | 6 |
| abstract_inverted_index.its | 39 |
| abstract_inverted_index.the | 7, 31, 42, 46, 52, 65, 72, 84, 88, 91, 94, 102, 114, 127, 137, 141, 144 |
| abstract_inverted_index.two | 108 |
| abstract_inverted_index.data | 11 |
| abstract_inverted_index.jets | 36, 55, 120 |
| abstract_inverted_index.loss | 20, 75, 100 |
| abstract_inverted_index.mass | 121 |
| abstract_inverted_index.term | 82 |
| abstract_inverted_index.that | 112 |
| abstract_inverted_index.this | 27 |
| abstract_inverted_index.used | 25, 70 |
| abstract_inverted_index.with | 107 |
| abstract_inverted_index.error | 81, 110 |
| abstract_inverted_index.input | 23, 117 |
| abstract_inverted_index.jets. | 145 |
| abstract_inverted_index.learn | 140 |
| abstract_inverted_index.model | 138 |
| abstract_inverted_index.study | 28 |
| abstract_inverted_index.terms | 111 |
| abstract_inverted_index.using | 15 |
| abstract_inverted_index.which | 125 |
| abstract_inverted_index.latent | 95 |
| abstract_inverted_index.layers | 63 |
| abstract_inverted_index.neural | 4 |
| abstract_inverted_index.output | 89, 119 |
| abstract_inverted_index.sparse | 10 |
| abstract_inverted_index.vector | 96 |
| abstract_inverted_index.ability | 48 |
| abstract_inverted_index.between | 87, 116 |
| abstract_inverted_index.dataset | 24 |
| abstract_inverted_index.decoder | 68 |
| abstract_inverted_index.develop | 1 |
| abstract_inverted_index.encoder | 66, 92 |
| abstract_inverted_index.imposes | 133 |
| abstract_inverted_index.measure | 113 |
| abstract_inverted_index.network | 5 |
| abstract_inverted_index.physics | 14, 134 |
| abstract_inverted_index.allowing | 136 |
| abstract_inverted_index.combined | 106 |
| abstract_inverted_index.composed | 60 |
| abstract_inverted_index.consists | 29, 77 |
| abstract_inverted_index.describe | 51 |
| abstract_inverted_index.function | 76 |
| abstract_inverted_index.hadronic | 35 |
| abstract_inverted_index.improves | 126 |
| abstract_inverted_index.particle | 13, 32 |
| abstract_inverted_index.sparsity | 40 |
| abstract_inverted_index.function. | 21 |
| abstract_inverted_index.momentum, | 124 |
| abstract_inverted_index.network's | 47, 128 |
| abstract_inverted_index.particles | 53 |
| abstract_inverted_index.accurately | 50 |
| abstract_inverted_index.capability | 130 |
| abstract_inverted_index.difference | 115 |
| abstract_inverted_index.divergence | 86 |
| abstract_inverted_index.evaluating | 45 |
| abstract_inverted_index.generation | 8, 129 |
| abstract_inverted_index.generative | 3 |
| abstract_inverted_index.generator. | 73 |
| abstract_inverted_index.kinematics | 142 |
| abstract_inverted_index.particles' | 103 |
| abstract_inverted_index.properties | 104 |
| abstract_inverted_index.transverse | 123 |
| abstract_inverted_index.variables. | 97 |
| abstract_inverted_index.autoencoder | 59 |
| abstract_inverted_index.possibility | 43 |
| abstract_inverted_index.properties. | 56 |
| abstract_inverted_index.variational | 58 |
| abstract_inverted_index.constituents | 33 |
| abstract_inverted_index.constraints, | 135 |
| abstract_inverted_index.mean-squared | 109 |
| abstract_inverted_index.convolutional | 62 |
| abstract_inverted_index.reconstruction | 80 |
| abstract_inverted_index.Kullback-Leibler | 85 |
| abstract_inverted_index.physics-informed | 19 |
| abstract_inverted_index.permutation-invariant | 17, 99 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.47999998927116394 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile |