Sparse Detector Imaging Sensor with Two-Class Silhouette Classification Article Swipe
YOU?
·
· 2008
· Open Access
·
· DOI: https://doi.org/10.3390/s8127996
This paper presents the design and test of a simple active near-infrared sparse detector imaging sensor. The prototype of the sensor is novel in that it can capture remarkable silhouettes or profiles of a wide-variety of moving objects, including humans, animals, and vehicles using a sparse detector array comprised of only sixteen sensing elements deployed in a vertical configuration. The prototype sensor was built to collect silhouettes for a variety of objects and to evaluate several algorithms for classifying the data obtained from the sensor into two classes: human versus non-human. Initial tests show that the classification of individually sensed objects into two classes can be achieved with accuracy greater than ninety-nine percent (99%) with a subset of the sixteen detectors using a representative dataset consisting of 512 signatures. The prototype also includes a Webservice interface such that the sensor can be tasked in a network-centric environment. The sensor appears to be a low-cost alternative to traditional, high-resolution focal plane array imaging sensors for some applications. After a power optimization study, appropriate packaging, and testing with more extensive datasets, the sensor may be a good candidate for deployment in vast geographic regions for a myriad of intelligent electronic fence and persistent surveillance applications, including perimeter security scenarios.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s8127996
- https://www.mdpi.com/1424-8220/8/12/7996/pdf?version=1403310699
- OA Status
- gold
- Cited By
- 23
- References
- 16
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2105884214
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2105884214Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s8127996Digital Object Identifier
- Title
-
Sparse Detector Imaging Sensor with Two-Class Silhouette ClassificationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2008Year of publication
- Publication date
-
2008-12-08Full publication date if available
- Authors
-
David J. Russomanno, Srikant Chari, Carl E. HalfordList of authors in order
- Landing page
-
https://doi.org/10.3390/s8127996Publisher landing page
- PDF URL
-
https://www.mdpi.com/1424-8220/8/12/7996/pdf?version=1403310699Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1424-8220/8/12/7996/pdf?version=1403310699Direct OA link when available
- Concepts
-
Detector, Computer science, Silhouette, Artificial intelligence, Image sensor, Wireless sensor network, Software deployment, Computer vision, Sensor array, Interface (matter), Real-time computing, Machine learning, Bubble, Operating system, Maximum bubble pressure method, Telecommunications, Parallel computing, Computer networkTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
23Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1, 2020: 1, 2019: 1, 2016: 1, 2015: 2Per-year citation counts (last 5 years)
- References (count)
-
16Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2105884214 |
|---|---|
| doi | https://doi.org/10.3390/s8127996 |
| ids.doi | https://doi.org/10.3390/s8127996 |
| ids.mag | 2105884214 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/27873972 |
| ids.openalex | https://openalex.org/W2105884214 |
| fwci | 2.94455796 |
| type | article |
| title | Sparse Detector Imaging Sensor with Two-Class Silhouette Classification |
| biblio.issue | 12 |
| biblio.volume | 8 |
| biblio.last_page | 8015 |
| biblio.first_page | 7996 |
| topics[0].id | https://openalex.org/T10331 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9973999857902527 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Video Surveillance and Tracking Methods |
| topics[1].id | https://openalex.org/T12389 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.987500011920929 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2202 |
| topics[1].subfield.display_name | Aerospace Engineering |
| topics[1].display_name | Infrared Target Detection Methodologies |
| topics[2].id | https://openalex.org/T10080 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9864000082015991 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1705 |
| topics[2].subfield.display_name | Computer Networks and Communications |
| topics[2].display_name | Energy Efficient Wireless Sensor Networks |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| concepts[0].id | https://openalex.org/C94915269 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6803849935531616 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1834857 |
| concepts[0].display_name | Detector |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6773626804351807 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C58103923 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6659345626831055 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2286025 |
| concepts[2].display_name | Silhouette |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5466514229774475 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C76935873 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5225850343704224 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q209121 |
| concepts[4].display_name | Image sensor |
| concepts[5].id | https://openalex.org/C24590314 |
| concepts[5].level | 2 |
| concepts[5].score | 0.49329322576522827 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q336038 |
| concepts[5].display_name | Wireless sensor network |
| concepts[6].id | https://openalex.org/C105339364 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4532020688056946 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2297740 |
| concepts[6].display_name | Software deployment |
| concepts[7].id | https://openalex.org/C31972630 |
| concepts[7].level | 1 |
| concepts[7].score | 0.45315974950790405 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[7].display_name | Computer vision |
| concepts[8].id | https://openalex.org/C66251956 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4468756318092346 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7451086 |
| concepts[8].display_name | Sensor array |
| concepts[9].id | https://openalex.org/C113843644 |
| concepts[9].level | 4 |
| concepts[9].score | 0.43752962350845337 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q901882 |
| concepts[9].display_name | Interface (matter) |
| concepts[10].id | https://openalex.org/C79403827 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3322850465774536 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[10].display_name | Real-time computing |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C157915830 |
| concepts[12].level | 2 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2928001 |
| concepts[12].display_name | Bubble |
| concepts[13].id | https://openalex.org/C111919701 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[13].display_name | Operating system |
| concepts[14].id | https://openalex.org/C129307140 |
| concepts[14].level | 3 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q6795880 |
| concepts[14].display_name | Maximum bubble pressure method |
| concepts[15].id | https://openalex.org/C76155785 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[15].display_name | Telecommunications |
| concepts[16].id | https://openalex.org/C173608175 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q232661 |
| concepts[16].display_name | Parallel computing |
| concepts[17].id | https://openalex.org/C31258907 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[17].display_name | Computer network |
| keywords[0].id | https://openalex.org/keywords/detector |
| keywords[0].score | 0.6803849935531616 |
| keywords[0].display_name | Detector |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6773626804351807 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/silhouette |
| keywords[2].score | 0.6659345626831055 |
| keywords[2].display_name | Silhouette |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5466514229774475 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/image-sensor |
| keywords[4].score | 0.5225850343704224 |
| keywords[4].display_name | Image sensor |
| keywords[5].id | https://openalex.org/keywords/wireless-sensor-network |
| keywords[5].score | 0.49329322576522827 |
| keywords[5].display_name | Wireless sensor network |
| keywords[6].id | https://openalex.org/keywords/software-deployment |
| keywords[6].score | 0.4532020688056946 |
| keywords[6].display_name | Software deployment |
| keywords[7].id | https://openalex.org/keywords/computer-vision |
| keywords[7].score | 0.45315974950790405 |
| keywords[7].display_name | Computer vision |
| keywords[8].id | https://openalex.org/keywords/sensor-array |
| keywords[8].score | 0.4468756318092346 |
| keywords[8].display_name | Sensor array |
| keywords[9].id | https://openalex.org/keywords/interface |
| keywords[9].score | 0.43752962350845337 |
| keywords[9].display_name | Interface (matter) |
| keywords[10].id | https://openalex.org/keywords/real-time-computing |
| keywords[10].score | 0.3322850465774536 |
| keywords[10].display_name | Real-time computing |
| language | en |
| locations[0].id | doi:10.3390/s8127996 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1424-8220/8/12/7996/pdf?version=1403310699 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s8127996 |
| locations[1].id | pmid:27873972 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/27873972 |
| locations[2].id | pmh:oai:doaj.org/article:849a9a6e63e14c328fbceee8947c13c5 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sensors, Vol 8, Iss 12, Pp 7996-8015 (2008) |
| locations[2].landing_page_url | https://doaj.org/article/849a9a6e63e14c328fbceee8947c13c5 |
| locations[3].id | pmh:oai:europepmc.org:2790860 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400806 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Europe PMC (PubMed Central) |
| locations[3].source.host_organization | https://openalex.org/I1303153112 |
| locations[3].source.host_organization_name | European Bioinformatics Institute |
| locations[3].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/3791003 |
| locations[4].id | pmh:oai:mdpi.com:/1424-8220/8/12/7996/ |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S4306400947 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | True |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | MDPI (MDPI AG) |
| locations[4].source.host_organization | https://openalex.org/I4210097602 |
| locations[4].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[4].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[4].license | cc-by |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/cc-by |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Sensors |
| locations[4].landing_page_url | https://dx.doi.org/10.3390/s8127996 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5016288549 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7500-3765 |
| authorships[0].author.display_name | David J. Russomanno |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I94658018 |
| authorships[0].affiliations[0].raw_affiliation_string | Center for Advanced Sensors, Department of Electrical and Computer Engineering, The University of Memphis, Memphis, TN, USA 38152. |
| authorships[0].institutions[0].id | https://openalex.org/I94658018 |
| authorships[0].institutions[0].ror | https://ror.org/01cq23130 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I94658018 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Memphis |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | David Russomanno |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Center for Advanced Sensors, Department of Electrical and Computer Engineering, The University of Memphis, Memphis, TN, USA 38152. |
| authorships[1].author.id | https://openalex.org/A5113580683 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Srikant Chari |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I94658018 |
| authorships[1].affiliations[0].raw_affiliation_string | Center for Advanced Sensors, Department of Electrical and Computer Engineering, The University of Memphis, Memphis, TN, USA 38152. |
| authorships[1].institutions[0].id | https://openalex.org/I94658018 |
| authorships[1].institutions[0].ror | https://ror.org/01cq23130 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I94658018 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Memphis |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Srikant Chari |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Center for Advanced Sensors, Department of Electrical and Computer Engineering, The University of Memphis, Memphis, TN, USA 38152. |
| authorships[2].author.id | https://openalex.org/A5111818507 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Carl E. Halford |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I94658018 |
| authorships[2].affiliations[0].raw_affiliation_string | Center for Advanced Sensors, Department of Electrical and Computer Engineering, The University of Memphis, Memphis, TN, USA 38152. |
| authorships[2].institutions[0].id | https://openalex.org/I94658018 |
| authorships[2].institutions[0].ror | https://ror.org/01cq23130 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I94658018 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Memphis |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Carl Halford |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Center for Advanced Sensors, Department of Electrical and Computer Engineering, The University of Memphis, Memphis, TN, USA 38152. |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1424-8220/8/12/7996/pdf?version=1403310699 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Sparse Detector Imaging Sensor with Two-Class Silhouette Classification |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10331 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9973999857902527 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Video Surveillance and Tracking Methods |
| related_works | https://openalex.org/W2048083981, https://openalex.org/W1972015969, https://openalex.org/W263122454, https://openalex.org/W2121864739, https://openalex.org/W1820551162, https://openalex.org/W2068787934, https://openalex.org/W1582219599, https://openalex.org/W2119312266, https://openalex.org/W2112695225, https://openalex.org/W207559119 |
| cited_by_count | 23 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2020 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2019 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2016 |
| counts_by_year[3].cited_by_count | 1 |
| counts_by_year[4].year | 2015 |
| counts_by_year[4].cited_by_count | 2 |
| counts_by_year[5].year | 2014 |
| counts_by_year[5].cited_by_count | 3 |
| counts_by_year[6].year | 2013 |
| counts_by_year[6].cited_by_count | 1 |
| counts_by_year[7].year | 2012 |
| counts_by_year[7].cited_by_count | 3 |
| locations_count | 5 |
| best_oa_location.id | doi:10.3390/s8127996 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1424-8220/8/12/7996/pdf?version=1403310699 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s8127996 |
| primary_location.id | doi:10.3390/s8127996 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1424-8220/8/12/7996/pdf?version=1403310699 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s8127996 |
| publication_date | 2008-12-08 |
| publication_year | 2008 |
| referenced_works | https://openalex.org/W2099973502, https://openalex.org/W2111127426, https://openalex.org/W1914674302, https://openalex.org/W4250689175, https://openalex.org/W1480376833, https://openalex.org/W2109993655, https://openalex.org/W1990075238, https://openalex.org/W2136277350, https://openalex.org/W197809939, https://openalex.org/W2016702069, https://openalex.org/W2135346934, https://openalex.org/W32466603, https://openalex.org/W1499734300, https://openalex.org/W1990139447, https://openalex.org/W2095538477, https://openalex.org/W2057773591 |
| referenced_works_count | 16 |
| abstract_inverted_index.a | 8, 33, 44, 56, 68, 115, 122, 133, 144, 152, 167, 183, 193 |
| abstract_inverted_index.be | 105, 141, 151, 182 |
| abstract_inverted_index.in | 23, 55, 143, 188 |
| abstract_inverted_index.is | 21 |
| abstract_inverted_index.it | 25 |
| abstract_inverted_index.of | 7, 18, 32, 35, 49, 70, 97, 117, 126, 195 |
| abstract_inverted_index.or | 30 |
| abstract_inverted_index.to | 64, 73, 150, 155 |
| abstract_inverted_index.512 | 127 |
| abstract_inverted_index.The | 16, 59, 129, 147 |
| abstract_inverted_index.and | 5, 41, 72, 173, 199 |
| abstract_inverted_index.can | 26, 104, 140 |
| abstract_inverted_index.for | 67, 77, 163, 186, 192 |
| abstract_inverted_index.may | 181 |
| abstract_inverted_index.the | 3, 19, 79, 83, 95, 118, 138, 179 |
| abstract_inverted_index.two | 86, 102 |
| abstract_inverted_index.was | 62 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.also | 131 |
| abstract_inverted_index.data | 80 |
| abstract_inverted_index.from | 82 |
| abstract_inverted_index.good | 184 |
| abstract_inverted_index.into | 85, 101 |
| abstract_inverted_index.more | 176 |
| abstract_inverted_index.only | 50 |
| abstract_inverted_index.show | 93 |
| abstract_inverted_index.some | 164 |
| abstract_inverted_index.such | 136 |
| abstract_inverted_index.test | 6 |
| abstract_inverted_index.than | 110 |
| abstract_inverted_index.that | 24, 94, 137 |
| abstract_inverted_index.vast | 189 |
| abstract_inverted_index.with | 107, 114, 175 |
| abstract_inverted_index.(99%) | 113 |
| abstract_inverted_index.After | 166 |
| abstract_inverted_index.array | 47, 160 |
| abstract_inverted_index.built | 63 |
| abstract_inverted_index.fence | 198 |
| abstract_inverted_index.focal | 158 |
| abstract_inverted_index.human | 88 |
| abstract_inverted_index.novel | 22 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.plane | 159 |
| abstract_inverted_index.power | 168 |
| abstract_inverted_index.tests | 92 |
| abstract_inverted_index.using | 43, 121 |
| abstract_inverted_index.active | 10 |
| abstract_inverted_index.design | 4 |
| abstract_inverted_index.moving | 36 |
| abstract_inverted_index.myriad | 194 |
| abstract_inverted_index.sensed | 99 |
| abstract_inverted_index.sensor | 20, 61, 84, 139, 148, 180 |
| abstract_inverted_index.simple | 9 |
| abstract_inverted_index.sparse | 12, 45 |
| abstract_inverted_index.study, | 170 |
| abstract_inverted_index.subset | 116 |
| abstract_inverted_index.tasked | 142 |
| abstract_inverted_index.versus | 89 |
| abstract_inverted_index.Initial | 91 |
| abstract_inverted_index.appears | 149 |
| abstract_inverted_index.capture | 27 |
| abstract_inverted_index.classes | 103 |
| abstract_inverted_index.collect | 65 |
| abstract_inverted_index.dataset | 124 |
| abstract_inverted_index.greater | 109 |
| abstract_inverted_index.humans, | 39 |
| abstract_inverted_index.imaging | 14, 161 |
| abstract_inverted_index.objects | 71, 100 |
| abstract_inverted_index.percent | 112 |
| abstract_inverted_index.regions | 191 |
| abstract_inverted_index.sensing | 52 |
| abstract_inverted_index.sensor. | 15 |
| abstract_inverted_index.sensors | 162 |
| abstract_inverted_index.several | 75 |
| abstract_inverted_index.sixteen | 51, 119 |
| abstract_inverted_index.testing | 174 |
| abstract_inverted_index.variety | 69 |
| abstract_inverted_index.accuracy | 108 |
| abstract_inverted_index.achieved | 106 |
| abstract_inverted_index.animals, | 40 |
| abstract_inverted_index.classes: | 87 |
| abstract_inverted_index.deployed | 54 |
| abstract_inverted_index.detector | 13, 46 |
| abstract_inverted_index.elements | 53 |
| abstract_inverted_index.evaluate | 74 |
| abstract_inverted_index.includes | 132 |
| abstract_inverted_index.low-cost | 153 |
| abstract_inverted_index.objects, | 37 |
| abstract_inverted_index.obtained | 81 |
| abstract_inverted_index.presents | 2 |
| abstract_inverted_index.profiles | 31 |
| abstract_inverted_index.security | 205 |
| abstract_inverted_index.vehicles | 42 |
| abstract_inverted_index.vertical | 57 |
| abstract_inverted_index.candidate | 185 |
| abstract_inverted_index.comprised | 48 |
| abstract_inverted_index.datasets, | 178 |
| abstract_inverted_index.detectors | 120 |
| abstract_inverted_index.extensive | 177 |
| abstract_inverted_index.including | 38, 203 |
| abstract_inverted_index.interface | 135 |
| abstract_inverted_index.perimeter | 204 |
| abstract_inverted_index.prototype | 17, 60, 130 |
| abstract_inverted_index.Webservice | 134 |
| abstract_inverted_index.algorithms | 76 |
| abstract_inverted_index.consisting | 125 |
| abstract_inverted_index.deployment | 187 |
| abstract_inverted_index.electronic | 197 |
| abstract_inverted_index.geographic | 190 |
| abstract_inverted_index.non-human. | 90 |
| abstract_inverted_index.packaging, | 172 |
| abstract_inverted_index.persistent | 200 |
| abstract_inverted_index.remarkable | 28 |
| abstract_inverted_index.scenarios. | 206 |
| abstract_inverted_index.alternative | 154 |
| abstract_inverted_index.appropriate | 171 |
| abstract_inverted_index.classifying | 78 |
| abstract_inverted_index.intelligent | 196 |
| abstract_inverted_index.ninety-nine | 111 |
| abstract_inverted_index.signatures. | 128 |
| abstract_inverted_index.silhouettes | 29, 66 |
| abstract_inverted_index.environment. | 146 |
| abstract_inverted_index.individually | 98 |
| abstract_inverted_index.optimization | 169 |
| abstract_inverted_index.surveillance | 201 |
| abstract_inverted_index.traditional, | 156 |
| abstract_inverted_index.wide-variety | 34 |
| abstract_inverted_index.applications, | 202 |
| abstract_inverted_index.applications. | 165 |
| abstract_inverted_index.near-infrared | 11 |
| abstract_inverted_index.classification | 96 |
| abstract_inverted_index.configuration. | 58 |
| abstract_inverted_index.representative | 123 |
| abstract_inverted_index.high-resolution | 157 |
| abstract_inverted_index.network-centric | 145 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.9324505 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |